EXDUL-518E

EDV-Nr.: A-374540

EXDUL-518S

EDV-Nr.: A-374520

11 Eingänge bipolar über Optokoppler 8 Ausgänge über Optokoppler je 1A 6 Zähler 32 Bit Programmierbare Logik TCP/IP- und Webserver LCD-Anzeige (nur EXDUL-518E)

Copyright[®] 2021 by Messcomp Datentechnik GmbH

Diese Dokumentation ist urheberrechtlich geschützt. Alle Rechte sind vorbehalten.

Messcomp Datentechnik GmbH behält sich das Recht vor, die in dieser Dokumentation beschriebenen Produkte jederzeit und ohne Vorankündigung zu verändern.

Ohne schriftliche Genehmigung der Firma Messcomp Datentechnik GmbH darf diese Dokumentation in keinerlei Form vervielfältigt werden.

Geschützte Warenzeichen

Windows[®], Visual Basic[®], Visual C++[®], Visual C#[®] sind eingetragene Warenzeichen von Microsoft.

wasco® ist ein eingetragenes Warenzeichen.

EXDUL[®] ist ein eingetragenes Warenzeichen.LabVIEW[®] ist ein eingetragenes Warenzeichen.

Bei anderen genannten Produkt- und Firmennamen kann es sich um Warenzeichen der jeweiligen Inhaber handeln.

Haftungsbeschränkung

Die Firma Messcomp Datentechnik GmbH haftet für keinerlei durch den Gebrauch des Multifunktionsmoduls EXDUL-518 und dieser Dokumentation direkt oder indirekt entstandenen Schäden.

Wichtiger Hinweis:

Dieses Handbuch wurde für die Module EXDUL-518E und EXDUL-518S erstellt. Das EXDUL-518E bietet zusätzlich eine LCD-Anzeige, alle weiteren Funktionen der Module sind identisch. Für das EXDUL-518S sind die Befehle und Funktionen, die das Display betreffen, nicht zutreffend.

			_
	1		
Inna	ITCV/O	r701	rnnic
ппа			

L 1.	Produktbeschreibung	5
2.	Anschlussklemmen	6
	2.1 Klemmenbelegung von CN1	6
2	Systemkomponenten	7
J.	2 1 Diadoabalthild EVDIII 519E	······/
	3.1 DIOCKSCHAILDIU EADUL-310E	<i>1</i>
	3.3 Digitale Fingange über Ontokonnler	oo ۵
	3.4 Digitale Ausgänge über EET-Leitungsschalter	9 Q
	3.5 Zähler	
	3.6 Programmierbare Logik	
	3.7 TCP/IP-Server	
	3.8 Webserver	10
	3.9 Kommunikations-Watchdog-Timer	10
	3.10 LCD Anzeige (nur EXDUL-518E)	10
	la hataia ha a hara	
4.	Inpetriepnanme	
	4.1 Anschluss an einen Ethernet-Port	
	4.2 Anschluss der Betriebsspählnung	
	4.5 Integriente webpage des EXDOL-516E / EXDOL-5165	12 12
	4.5 Grundeinstellung Netzwerk-Konfiguration	12
	4.6 Zusammensetzung und Aufbau der IP-Adresse	
	4.7 Änderung der Netzwerk-Konfiguration	14
	4.8 Konfiguration mit statischer IP-Adresse (DHCP deaktiviert)	15
	4.9 Konfiguration mit dynamischer IP-Adresse (DHCP aktiviert)	
	4.10 LCD-Anzeige während des Bootvorgangs (nur EXDUL-518E)	18
	4.11 LCD-Anzeige während des Betriebs (nur EXDUL-518E)	19
5	Zugriff auf das EXDLIL-518	20
5.	5 1 Zugriff über die EXDUL-510	20
	5.1 Zugriff über TCP/IP Sockets	20
	5.3 Host-Namen, IP-Adresse und MAC-Adresse festsstellen	
6.	11 Optokopplereingänge	23
	6.1 Pinbelegung der Eingangsoptokoppler	23
	6.2 Eingangsbeschaltung	24
	6.3 Eingangsstrom	24
7.	8 Optokopplerausgänge	25
-	7.1 Optokoppler/FET- Ausgangsschaltung	25
	7.2 Ausgangsdaten	25
EXD	DUL-518E / EXDUL-518S © 2021 by Messcomp Datentechnik GmbH	DV01

	7.3 Freilaufdiode	26
	7.4 Programmierung der Optokopplerausgänge	27
	7.5 Optokopplerausgänge rücklesen	27
8.	Zähler	28
9.	Programmierbare Logik	29
	9.1 Logikzweig	30
	9.2 Logikeingänge	30
	9.3 Logikverknüpfung	31
	9.4 Logikausgänge	31
	9.5 Message an PC schicken	32
	9.6 Timing der programmierbaren Logik	33
4.0		
10.	Watchdog-Timer (WDT)	34
11.	Error-Register	35
12.	Informations-, LCD- und Userregister	36
	12.1 Register HW-Kennung und Seriennummer	36
	12.2 Speicherbereiche UserA, UserB, UserLCD1m* und UserLCD2m*	37
	12.3 Display-Register UserLCD-Zeile1*, UserLCD-Zeile2* und LCD-Kontrast*	37
13.	Installation dos Traibors	20
	Installation des Treibers	38
	Installation des Treibers	38
14.	Programmierung	38 39
14.	Programmierung	38 39
14.	Programmierung. 14.1 Einführung	38 39 39
14.	Programmierung. 14.1 Einführung	38 39 39 39
14.	Programmierung. 14.1 Einführung	38 39 39 39 39 46
14.	Programmierung. 14.1 Einführung	38 39 39 39 39 39 39 39 39
14.	Programmierung. 14.1 Einführung	38 39 39 39 39 46 79 80
14.	Programmierung. 14.1 Einführung	38 39 39 39 39 46 79 80
14.	Programmierung. 14.1 Einführung. 14.2 Programmierarten. 14.3 Programmierung unter Windows mit der .NET EXDUL.dll Library 14.4 Programmierung mit TCP-Libraries. 14.5 Receivermodus. 14.6 Modulzugriff über LabVIEW und EXDUL.dll	38 39 39 39 39 39 39 39 39 39 39 39 39 39 39
14. 15.	Programmierung. 14.1 Einführung. 14.2 Programmierarten. 14.3 Programmierung unter Windows mit der .NET EXDUL.dll Library 14.4 Programmierung mit TCP-Libraries. 14.5 Receivermodus. 14.6 Modulzugriff über LabVIEW und EXDUL.dll FAQ - Problembehandlung	38 39 39 39 39 46 79 80 81
14. 15. 16.	Programmierung	38 39 39 39 46 79 80 81 86
14. 15. 16.	Programmierung	38 39 39 39 39 46 79 80 81 86
14. 15. 16. 17.	Programmierung	38 39 39 39 39 39 46 80 81 86 88
14. 15. 16. 17.	Programmierung	38 39 39 39 39 46 80 81 86 88
14. 15. 16. 17.	Programmierung	38 39 39 39 39 46 80 81 86 88 88 90
14. 15. 16. 17.	Programmierung	38 39 39 39 39 46 80 81 86 88 88 90
14. 15. 16. 17.	Programmierung	38 39 39 39 39 46 80 81 86 88 90 91
14. 15. 16. 17. 18.	Programmierung	38 39 39 39 39 80 81 86 88 88 90 91
14. 15. 16. 17. 18.	Programmierung	38 39 39 39 39 46 80 81 86 88 90 91 91
14. 15. 16. 17. 18. 19.	Programmierung. 14.1 Einführung 14.2 Programmierarten. 14.3 Programmierung unter Windows mit der .NET EXDUL.dll Library 14.4 Programmierung mit TCP-Libraries. 14.5 Receivermodus. 14.6 Modulzugriff über LabVIEW und EXDUL.dll FAQ - Problembehandlung Technische Daten 17.1 Beschaltungsbeispiele. 17.2 Beschaltung der Optokoppler-Eingänge. 17.2 Beschaltung ster Optokoppler-Ausgänge. Produkthaftungsgesetz.	38 39 39 39 39 46 80 81 86 88 90 91 91
14. 15. 16. 17. 18. 19. 20	Programmierung	38 39 39 39 39 80 80 81 86 86 88 90 91 91 94 94
14. 15. 16. 17. 18. 19. 20.	Programmierung. 14.1 Einführung 14.2 Programmierarten. 14.3 Programmierung unter Windows mit der .NET EXDUL.dll Library 14.4 Programmierung mit TCP-Libraries 14.5 Receivermodus. 14.6 Modulzugriff über LabVIEW und EXDUL.dll FAQ - Problembehandlung Technische Daten 17.1 Beschaltungsbeispiele. 17.2 Beschaltung der Optokoppler-Eingänge. 17.2 Beschaltung der Optokoppler-Ausgänge. ASCII-Tabelle Produkthaftungsgesetz. EG-Konformitätserklärung	38 39 39 39 39 80 80 81 86 86 88 90 91 91 94 94

1. Produktbeschreibung

Das EXDUL-518E mit Ethernet-Schnittstelle verfügt über 11 digitale Eingänge und acht digitale Ausgänge mit galvanischer Trennung. Die bipolaren Eingänge sind mit zusätzlichen Überspannungsschutzdioden abgesichert. Die mit Verpolschutz-Dioden geschützten Ausgänge können aufgrund der nachgeschalteten FET-Leistungsschalter jeweils einen maximalen Strom von 1 A pro Kanal schalten.

Sechs der 11 Optokoppler-Eingänge können bei Bedarf auch als hardwareunterstützte 32Bit Zählereingänge programmiert werden. Um einen Datenverlust bei einem Stromausfall zu verhindern, werden die Zählerstände in einem Zeitabstand von 100µs gesichert und bei einem Restart des Moduls automatisch in die Zählerregister geladen.

Über die integrierte Webpage kann das Modul benutzerfreundlich konfiguriert werden. Zudem ist auch ein einfacher Funktionstest möglich.

Die Kommunikation zwischen PC und Modul erfolgt über das Senden und Empfangen von Byte-Arrays über eine stabile TCP/IP-Verbindung, welche durch ein Handshakeprotokoll abgesichert ist.

Die programmierbare Logik des Moduls kann sowohl für autarke Aktionen an den Ausgängen, als auch für Meldungen an den PC genutzt werden. Hierdurch ist oft ein Polling der Eingänge nicht mehr nötig und sowohl der Datenverkehr als auch die Rechnerauslastung kann wesentlich verringert werden.

Über eine externe Spannungquelle wird das Modul mit der notwendigen Betriebsspannung versorgt.

Die programmierbare LCD-Anzeige ermöglicht die Darstellung von digitalen I/O-Statusinformationen oder programmierbaren anwenderspezifischen Daten.

Die Anschlüsse für die Spannungsversorgung sind wie die Anschlüsse des Eingangs- und Ausgangsoptokopplers einer 24poligen Schraubklemmleiste zugeführt. Das kompakte Gehäuse erlaubt den Einsatz als mobiles Modul am Notebook sowie als Steuermodul im Steuerungs- und Maschinenbau mit einfacher Wandmontage oder unkomplizierter Montage auf DIN EN-Tragschienen.

2. Anschlussklemmen

2.1 Klemmenbelegung von CN1

DOUT01+	2	Ø 1	DOUT00+
DOUT03+	4 🔘	₿ 3	DOUT02+
DOUT05+	6 🛇	5	DOUT04+
DOUT07+	8	07	DOUT06+
DOUT_D	10 🕖	۹	DOUT00 07-
DIN01 / Zähler1	12 ⊘	11	DIN00 / Zähler0
DIN03 / Zähler3	14 ⊘	Ø 13	DIN02 / Zähler2
DIN05 / Zähler5	16 🔵	15	DIN04 / Zähler4
DIN07	18 🚫	Ø 17	DIN06
DIN09	20 🚫	Ø 19	DIN08
DIN_COM	22 🕖	21	DIN10
GND_EXT	24 ⊘	23	Vcc_EXT

Vcc_EXT: Anschlussklemme für externe Versorgungsspannung GND_EXT: Masse-Anschluss

3. Systemkomponenten

3.1 Blockschaltbild EXDUL-518E

Grafik 3.1 Blockschaltbild EXDUL-518E

3.2 Blockschaltbild EXDUL-518S

Grafik 3.2 Blockschaltbild EXDUL-518S

3.3 Digitale Eingänge über Optokoppler

11 bipolare Kanäle mit galvanischer Trennung Überspannungsschutz-Dioden Eingangsspannungsbereich

high = 10..30 Volt low = 0..3 Volt

3.4 Digitale Ausgänge über FET-Leitungsschalter

8 Kanäle mit galvanischer Trennung über Optokoppler Kontakt A des FET (Source, + Anschluss) mit jeweils einer Anschlussklemme, Kontakt B (Drain, - Anschluss) mit gemeinsamer Anschlussklemme aller 8 Kanäle Verpolungsschutz-Dioden Zuschaltbare Freilaufdioden für alle Kanäle Spannung-CE: max. 30 V Ausgangsstrom: max. 1A/Kanal Schaltzeit: typ. 60µs (24V, 100mA) Abfallzeit: typ. 250µs (24V, 100mA)

3.5 Zähler

6 programmierbare Zähler 32 Bit (belegen 6 Optokoppler-Eingänge) Zählfrequenz: max. 5 kHz Automatische Sicherung der Zählerstände im 10kHz Takt

3.6 Programmierbare Logik

Ausgänge über Verknüpfungen schalten Meldung an PC bei Zustandsänderung an den Eingängen senden

3.7 TCP/IP-Server

Stabile und einfache Kommunikation mit einfachem Protokoll

3.8 Webserver Konfiguration Funktionstest Update der Firmware

3.9 Kommunikations-Watchdog-Timer

Einstellbares Zeitfenster von 1 bis 2³² - 1 ms

3.10 LCD Anzeige (nur EXDUL-518E)

Matrixanzeige mit 2 Zeilen und 16 Spalten zur Darstellung von 16 Zeichen je Zeile

Programmierbar zur Darstellung anwendungsspezifischer Daten oder als I/O-Zustandsanzeige

4. Inbetriebnahme

Der Netzwerk- bzw. PC-Anschluss erfolgt einfach und unkompliziert über eine Ethernet-Schnittstelle, die Konfiguration über einen Webbrowser. Für die Versorgung mit der notwendigen Betriebsspannung ist ein externes Netzteil notwendig.

4.1 Anschluss an einen Ethernet-Port

Das EXDUL-518E/EXDUL-518S verfügt über ein 10/100 Fast Ethernet Interface mit RJ45 Anschluss und wird über ein Netzwerkkabel direkt an einen PC, einen Ethernet-Hub oder an einen Ethernet-Switch angeschlossen.

Das Modul bootet nach Anlegen der Betriebsspannung, sobald eine stabile Ethernet-Verbindung besteht, leuchtet die linke LED an der RJ45-Buchse des EXDUL-518 kontinuierlich grün.

4.2 Anschluss der Betriebsspannung

Das EXDUL-518E / EXDUL-518S benötigt für den Betrieb eine Spannungsversorgung von +10 V ... +30 V DC an Klemme 23 (Vcc) und Klemme 24 (GND).

4.3 Integrierte Webpage des EXDUL-518E / EXDUL-518S

Der Zugriff auf die Webpage des EXDUL-518 ist über eine TCP/ IP-Verbindung durch einen beliebigen Web-/Internetbrowser wie Mozilla Firefox, Chrome, Edge, Safari usw. möglich. Über die Webpage besteht die Möglichkeit, Verbindungsinformationen auszulesen und passwortgeschützt Konfigurationsdaten zu verändern. Vorgenommene Einstellungen werden im internen Speicher des EXDUL-518 gespeichert und beim Booten geladen. Die EXDUL-518-Webpage ermöglicht zudem das Beschreiben, Auslesen und Anzeigen der Anwender-Speicherbereiche UserA, UserB, UserLCD1m und UserLCD2m sowie das Starten und Stoppen des Zählers. Zudem ist das Testen der digitalen Ein- und Ausgänge möglich.

4.4 Passwortschutz - Zugangskennung

Wie bereits aufgeführt, ist über die EXDUL-Webpage die Netzwerk-Konfiguration, die Einstellung der LCD-Anzeige, das Beschreiben der User-Speicherbereiche sowie das Setzen der Ein- und Ausgänge und des Zählers möglich. Um unbefugten Zugriff zu vermeiden, sind diese Einstellungsbereiche durch ein Passwort geschützt.

Werksmäßig ist folgende Zugangskennung voreingestellt:

Benutzerkennung:	admin
Kennwort:	11111111

Groß-/Kleinschreibung beachten!

Falls über diese Zugangsdaten kein Zugriff möglich ist, wurde die Einstellung der Zugangskennung von Ihrem Systemadministrator geändert.

4.5 Grundeinstellung Netzwerk-Konfiguration

In der Grundeinstellung ist das EXDUL-518 auf DHCP (Dynamic Host Configuration Protocol), d.h. auf dynamische IP-Adresse eingestellt. Bei der Inbetriebnahme schickt das EXDUL-518 eine Nachfrage ins Netzwerk (LAN). Im Netzwerk, aktiver DHCP-Dienst vorausgesetzt, wird dem Modul daraufhin automatisch eine IP-Adresse zugewiesen. Diese Einstellung ermöglicht Ihnen einfach und unkompliziert den Anschluss des Moduls zum Anpassen der Konfigurationsdaten nach Ihren Bedürfnissen.

4.6 Zusammensetzung und Aufbau der IP-Adresse

IP4-Adressen bestehen aus 32 Bits = 4 Bytes (Oktetten). Jedes Byte kann einen Wert zwischen 0 und 255 annehmen. Die Darstellung erfolgt als vier Dezimalzahlen durch Punkte getrennt (z.B. 192.168.1.83).

Jede IP-Adresse enthält einen Netzwerk- und Geräteanteil (Hostanteil). Über die Subnetzmaske erfolgt die Trennung zwischen Netz- und Hostteil. Alle Geräte, die sich im gleichen Netzwerkteil befinden, können miteinander kommunizieren.

Beispiel:

Ist der IP-Adresse 192.168.1.83 die Subnetzmaske 255.255.0.0 zugeordnet, so befindet sich das Gerät im Netz 192.168.-.- als Gerät -.-.1.83.

4.7 Änderung der Netzwerk-Konfiguration

Zum Ändern der werksmäßigen Konfigurationseinstellungen schließen Sie das EXDUL-518 über die RJ45-Buchse und das beiliegende Standard-Netzwerkkabel an ein lokales Netzwerk an. Zudem ist eine Spannungsversorgung (+10 V ...+30 V) an Klemme 23 (Vcc) und Klemme 24 (GND) des Moduls nötig. Das EXDUL bootet jetzt, die linke LED an der RJ45-Buchse des EXDUL-518 leuchtet kontinuierlich grün sobald eine stabile Ethernet-Verbindung besteht. Über einen beliebigen Web-/ Internetbrowser ist durch Eingabe des Host-Namens http://EXDUL-518 der Zugriff auf die EXDUL-518-Webpage möglich. Durch Anklicken des Buttons TCP/IP Config öffnet folgende Konfigurationsmaske:

P/IP Konfi	guration	
Seite dient zur Einstellu	ng und Änderung der Netzwerkparameter.	
htung: Beachten Sie di	ingend die Hinweise im Handbuch, durch	
korrekte Einstellungen g	eht die Netzwerkkonnektivität verloren.	
MAC Address:	d4:b4:3e:00:00:00	
Host Name:	EXDUL-518	
	Enable DHCP	
IP Address:	192.168.180.4	
Gateway:	192.168.180.1	
Subnet Mask:	255.255.255.0	
Primary DNS:	192.168.100.1	
Secondary DNS:	0.0.0.0	

Über das beiliegende Standard-Netzwerkkabel kann das EXDUL-518 auch direkt an einen PC mit Ethernet-Schnittstelle angeschlossen werden. Beim Direktanschluß steht im Normalfall kein DHCP-Dienst zur Verfügung, da weder der PC noch das EXDUL diesen bietet. Für diesen Fall ist das EXDUL-518 über die zuletzt eingestellte statische IP-Adresse ansprechbar. Für EXDUL-Neugeräte ist die IP-Adresse 169.254.1.1 gültig.

Wichtiger Hinweis:

Zum Kommunizieren mit dem angeschlossenen EXDUL muss sich der verwendete PC im gleichen Netzwerk befinden. Dazu muss beim Rechner DHCP deaktiviert und z.B.von der EXDUL-IP-Adresse 192.168.1.83 (Subnetzmaske 255.255.0.0) die ersten zwei Zahlenblöcke (192.168) in die IP-Adresse des Rechners übernommen werden. Die zwei weiteren Blöcke können, jeweils Ihren Bedürfnissen angepasst, mit Werten zwischen 0 und 255 belegt werden.

das s an
tu

Der Netzanteil der IP-Adresse ist von der Subnetzmaske abhängig. Von der IP-Adresse des EXDUL-518 müssen alle Oktette, die in der Subnetzmaske mit 255 belegt sind, in die IP-Adresse des Rechners übernommen werden (siehe auch Kapitel 4.6 Zusammensetzung und Aufbau der IP-Adresse).

4.8 Konfiguration mit statischer IP-Adresse (DHCP deaktiviert)

Für die Konfiguration des EXDUL-518 auf die statische IP-Adresse muss DHCP in der EXDUL-518-Konfigurationsmaske deaktiviert werden. Für die Konfigurationsänderung schließen Sie das EXDUL-518 wie unter Kapitel 4.7 (Änderung der Netzwerk-Konfiguration) an ein LAN oder einen PC an.

Sobald eine stabile Ethernet-Verbindung besteht, haben Sie über einen beliebigen Internetbrowser Zugriff auf die Webpage des EXDUL-518. Durch Eingabe des Host-Namens http://EXDUL-518 sollte der Browser die EXDUL-518-Webpage öffnen, das Anklicken des Buttons TCP/IP Config öffnet folgende Konfigurationsmaske:

D/TD Vanf		
P/IP Konfi	guration	
Seite dient zur Einstellu	ng und Änderung der Netzwerkparameter.	
htung: Beachten Sie dr	ingend die Hinweise im Handbuch, durch	
korrekte Einstellungen g	eht die Netzwerkkonnektivität verloren.	
MAC Address:	d4:b4:3e:00:00:00	
Host Name:	EXDUL-518	
The Addresses	L Enable DHCP	
DP Address:	192-108-180.4	
Gateway:	192-168-180-1	
Subnet Mask:	255.255.255.0	
Primary DNS:	192.168.100.1	
Secondary DNS:	0.0.0.0	
	Daten speichern	

Sobald Sie DHCP deaktivieren, können Sie Ihre gewünschte IP-Adresse, Subnetzmaske und den gewünschten Host-Namen eintragen. Durch Anklicken des Buttons **Konfiguration speichern** werden die aktuell eingetragenen Daten in den internen Speicher des EXDUL-518 übernommen. Das Modul ist ab diesen Zeitpunkt nur über die hier eingestellte IP-Adresse bzw. über den angegebenen Host-Namen ansprechbar. Der verwendete PC oder das LAN muss sich dazu im gleichen Netz befinden.

Wichtiger Hinweis: Jede IP-Adresse und jeder Host-Name darf nur einem Gerät bzw. Modul in einem Netzwerk zugeteilt werden, eine Doppelvergabe ist nicht zulässig! Der Host-Name darf beliebig gewählt werden, jedoch nur aus den ASCI-Zeichen 0-9 sowie A-Z (Groß/Kleinschreibung egal) und dem - (Bindestrich) bestehen. Bestimmte IP-Adressen sind reserviert bzw. haben eine Sonderfunktion wie z.B.: 127.0.0.1 (local Host)

192.168.1.0 (0 ist Adresse des Netzes) mit 255.255.255.0 (Subnetz-maske)

EXDUL-518E / EXDUL-518S © 2021 by Messcomp Datentechnik GmbH

Bitte erkundigen Sie sich bei Ihrem Netzwerkadministrator, welche IP-Adresse Sie verwenden dürfen. Bei Verwendung unzulässiger IP-Adressen besteht die Möglichkeit, dass der Zugriff auf das Modul nicht mehr möglich ist. Die Einstellung der wichtigsten nicht zulässigen Adressen wird vom Modul blockiert.

4.9 Konfiguration mit dynamischer IP-Adresse (DHCP aktiviert)

Falls Sie das EXDUL-518 in ein bestehendes Netzwerk mit bereits aktiven DHCP-Server einbinden und über eine dynamische IP-Adresse ansprechen möchten, muss DHCP (Dynamic Host Configuration Protocol) in der Konfigurationsmaske der Webpage aktiviert sein. In der werksmäßigen Grundeinstellung ist DHCP bereits aktiviert und keine Umstellung notwendig.

Bei eingestellter statischer IP-Adresse wird DHCP wie folgt aktiviert: Schließen Sie dazu das EXDUL-518 über ein Netzwerkkabel (bei älteren PCs über ein Crossover-Netzwerkkabel) an einen Computer an. Der verwendete PC muss auf "Folgende IP-Adresse verwenden: (DHCP-deaktiviert)" eingestellt sein. In die IP-Adresse des Rechners muss der Netzanteil (siehe dazu Kapitel 4.6, Zusammensetzung und Aufbau der IP-Adresse) aus der IP-Adresse des EXDUL-518 übernommen werden, denn der Computer und das EXDUL müssen sich im gleichen Netzwerk befinden. An den Klemmen 23 (Vcc) und 24 (GND) schließen Sie die Spannungsversorgung (+10 V ...+30 V) für das EXDUL-518 an. Das Modul bootet jetzt, die linke LED an der RJ45-Buchse des EXDUL-518 leuchtet kontinuierlich grün, sobald eine stabile Ethernet-Verbindung besteht. Den Zugriff auf die Webpage des EXDUL-518 ermöglicht Ihnen ein beliebiger Internetbrowser durch Eingabe des Host-Namens oder der IP-Adresse des EXDUL-518. Jetzt sollte der Browser die EXDUL-518-Webpage öffnen. Durch Anklicken des Buttons TCP/IP Config öffnet sich die Konfigurationsmaske, in der Sie wie in nachfolgender Abbildung Enable DHCP aktivieren:

P/IP Konfi	guration	
Seite dient zur Einstellu	ing und Änderung der Netzwerkparameter.	
htung: Beachten Sie dr	ringend die Hinweise im Handbuch, durch	
orrekte Einstellungen g	eht die Netzwerkkonnektivität verloren.	
MAC Address:	d4:b4:3e:00:00:00	
Host Name:	EXDUL-518	
	C Enable DHCP	
IP Address:	192.168.180.4	
Gateway:	192.168.180.1	
Subnet Mask:	255.255.255.0	
Primary DNS:	192.168.100.1	
Secondary DNS:	0.0.0.0	
	Dates specthers	

Wichtiger Hinweis:

Bevor Sie DHCP aktivieren, ist eine Absprache mit Ihrem Netzwerkadministrator dringend notwendig. Sollten Sie mehrere gleiche Module aus der EXDUL-5xx-Serie in ein Netzwerk einbinden, müssen Sie den voreingestellten Host-Namen der einzelnen Module ändern. Jeder Host-Name darf innerhalb eines Netzwerkes nur einem Gerät bzw. Modul zugewiesen werden. Der Host-Name kann beliebig gewählt werden, jedoch nur aus den ASCI-Zeichen 0-9 sowie A-Z (Groß/Kleinschreibung egal) und dem -(Bindestrich) bestehen.

4.10 LCD-Anzeige während des Bootvorgangs (nur EXDUL-518E)

Während des Bootvorgangs des Moduls erscheint im Display eine Infoanzeige. In Zeile 1 wird der Modul-Name angezeigt, in Zeile 2 die Information, dass das Modul initialisiert wird. Sobald der Bootvorgang abgeschlossen ist, erscheint in beiden Fällen, je nach Einstellung, entweder die I/O-Statusanzeige oder die UserLCD-Anzeige.

4.11 LCD-Anzeige während des Betriebs (nur EXDUL-518E)

Nach dem Booten schaltet das Display, je nach Einstellung, von der Infoanzeige in die I/O-Statusanzeige oder UserLCD-Anzeige. Während der I/O-Statusanzeige werden in Zeile1 die aktuellen Zustände der Eingänge, in Zeile 2 die Zustände der Ausgänge angezeigt. Falls in der EXDUL-518 Webpage der UserLCD-Modus aktiviert ist, erscheint anstelle der I/O-Statusanzeige die UserLCD-Anzeige mit den Werten aus den Speicherbereichen UserLCD1m und UserLCD2m. Die Daten aus UserLCD1m und UserLCD2m werden solange auf dem LCD-Display angezeigt, bis neue Benutzerdaten über UserLCD-Zeile1 und UserLCD-Zeile2 auf die LCD-Anzeige geschrieben werden. Um einen "Screen-Burn" zu vermeiden, wechselt die Anzeige im laufenden Betrieb etwa jede Minute für ca. fünf Sekunden von der I/O-Statusanzeige oder UserLCD-Anzeige in die Infoanzeige mit der aktuellen IP-Adresse.

5. Zugriff auf das EXDUL-518

Der Zugriff auf die Konfigurationseinstellungen und auf die Ein-/Ausgänge des EXDUL-518 ist wie bereits erwähnt über die EXDUL-518 Webpage sowie über TCP/IP-Sockets möglich. Dazu wird die IP-Adresse, der Host-Name oder die MAC-Adresse benötigt.

5.1 Zugriff über die EXDUL Webpage

Die Webpage des EXDUL-518 ermöglicht es die Eingänge zu lesen, die Ausgänge zu setzen, die Anwender-Speicherbereiche UserA, UserB und UserLCD sowie die Verbindungs- oder Modulinformationen auszulesen und die Konfigurationsdaten zu verändern. Der Zugriff auf die Webpage ist von jedem mit dem Modul verbundenen Computer über einen beliebigen Internetbrowser möglich. Der verwendete PC muss auf **IP-Adresse automatisch beziehen (DHCP-aktiviert)** eingestellt sein, soweit sich das EXDUL-518 noch im Auslieferungszustand (DHCP aktiviert) befindet und in ein Netzwerk mit aktiven DHCP-Dienst integriert ist. Durch Eingabe des Host-Namens (Im Auslieferzustand **http://EXDUL-518**, ansonsten den von Ihnen eingestellten Host-Namen, evtl. über ExdulUtility_v2_xx oder spätere Version feststellen) oder der IP-Adresse können Sie die Webpage öffnen. Falls ein Öffnen der EXDUL-518-Webpage nicht möglich ist, überprüfen Sie die Netzwerkverbindung oder den eingegebenen Host-Namen. Nähere Informationen finden Sie im Kapitel FAQ - Problembehandlung.

5.2 Zugriff über TCP/IP-Sockets

Mit der Verwendung des TCP-Protokolls wird eine zuverlässige Verbindung zwischen PC und dem EXDUL-518 erreicht. Das Protokoll ergreift selbstständig Maßnahmen bei Datenverlust. Die Adressierung des Moduls findet über eine 4 Byte IP-Adresse (IPv4) bzw. über den vergebenen Host-Namen und einer Portnummer 9760 statt. Der PC versendet über die Verbindung für jeden Befehl ein Byte-Array. Das Modul verarbeitet den Befehl und sendet immer eine Rückantwort. In Kombination mit einer Hochsprache ist über die TCP/IP-Verbindung das Lesen der Eingänge, das Setzen der Ausgänge, das Starten, Stoppen und Auslesen des Zählers, das Beschreiben der User-Speicherbereiche, das Auslesen der Verbindungsund Modulinformationen sowie das Verändern der Konfigurationsdaten möglich. Insgesamt können 3 TCP/IP-Verbindungen gleichzeitig mit dem Modul geöffnet sein.

5.3 Host-Namen, IP-Adresse und MAC-Adresse festsstellen

Falls Sie für EXDUL-5xx-Module weder den Host-Namen noch die IP-Adresse oder MAC-Adresse kennen, ermöglicht Ihnen das Suchprogramm ExdulUtility_v2_xx (oder höher) diese festzustellen. Falls Ihre Firewall die Kommunikation des Suchprogrammes mit den EXDUL-5xx verhindert, ist eine Freigabe für das Programm in der Firewall erforderlich.

Das Suchprogramm **ExdulUtility_v2_xx** (oder höher) befindet sich auf der EXDUL-Software-CD oder steht auf www.wasco.de zum Download bereitgestellt.

6. 11 Optokopplereingänge

Das EXDUL-518 verfügt über 11 Eingangskanäle, deren galvanische Trennung mittels Optokoppler erreicht wird. Die Isolationsspannung des Optokopplers zwischen Masse des Moduls und Eingang beträgt 500 Volt, während die Spannung zwischen den Eingangskanälen auf 50 Volt begrenzt ist.

6.1 Pinbelegung der Eingangsoptokoppler

Abb. 6.1 Pinning Eingangsoptokoppler

6.2 Eingangsbeschaltung

Abb. 6.2 Eingangsbeschaltung

Die Eingänge des Optokopplers sind bipolar ausgeführt. Im Normalfall wird der DIN_COM Anschluß auf Minus gelegt und am DINx-Anschluss eine Spannung angelegt. Sie können jedoch auch, falls es schaltungstechnisch sinnvoller ist, am DIN_COM Anschluß die Plus-Spannung und am DINx Anschluß die Minus-Spannung anlegen. Bitte beachten Sie, dass diese Festlegung Aufgrund des gemeinsamen DIN_COM-Anschlusses sämtlicher Eingangsoptokoppler für alle Eingänge gilt.

6.3 Eingangsstrom

$$I_{E} \approx \frac{U_{E} - 1,1V}{3200\Omega}$$

Bei einer Eingangsspannung zwischen DINx und DIN_COM von 24 Volt ergibt sich ein Eingangsstrom von ca. 7mA, bei 12V von ca. 3,4 mA.

7. 8 Optokopplerausgänge

Das EXDUL-Modul verfügt über 8 Ausgangskanäle, deren galvanische Trennung ebenfalls mittels Optokoppler erreicht werden. Verstärkt wird der Optokopplerausgang durch einen leistungsfähigen MOSFET, was einen Ausgangsstrom von 1A pro Kanal ermöglicht. Für bestimmte Situationen steht den Kanälen jeweils eine Freilaufdiode zur Verfügung.

7.1 Optokoppler/FET- Ausgangsschaltung

7.2 Ausgangsdaten

Spannung-DS: Ausgangsstrom:	max. 30V max.1A/Kanal
Schaltzeiten:	typ.60µs (24V, 100mA)
Abfallzeiten:	typ. 250µs (24V, 100mA)

7.3 Freilaufdiode

Werden mit den Optokopplerausgängen Verbraucher mit kleinen Induktivitäten geschalten und ist eine direkte Anbringung einer Freilaufdiode an der Induktivität nicht möglich, so steht jedem Kanal eine Freilaufdiode im Modul zur Verfügung. Die Beschaltung sollte wie in folgender Grafik aussehen.

Kann dem Verbraucher direkt in dessen Nähe eine passende Freilaufdiode parallel geschalten werden, so sollte dies grundsätzlich vorgezogen werden. Wird zudem eine höhere Induktivität (Schaltschütz) angesteuert, so ist eine externe Freilaufdiode zwingend nötig um Schäden durch die entstehenden Spannungsspitzen beim Abschaltem der Induktivität zu verhindern. Diese Freilaufdiode sollte so nah wie möglich am induktivem Verbraucher (z.B. Schaltschütz) angebracht werden.

7.4 Programmierung der Optokopplerausgänge

Für die Programmierung der Optokopplerausgänge stehen mehrere Zugriffsfunktionen zur Verfügung. So können sowohl alle Kanäle auf einmal angesteuert werden als auch einzeln beschrieben werden. Sollte der aktuelle Zustand der Ausgänge im Anwenderprogramm nicht speicherbar sein, so kann dieser über einen Lese-Befehl rückgelesen werden. Hier ist zu beachten, dass der gelesene Schaltzustand nur dem primären Zustand (auf Prozessorseite) entspricht. Soll der tatsächliche Schaltzustand bzw. der Pegel des Ausgangs rückgelesen werden, muss dafür ein Optokopplereingang verwendet werden (siehe Kapitel Optokopplerausgänge rücklesen). Eine detailierte Beschreibung der Programmierung ist im Kapitel Programmierung zu finden.

7.5 Optokopplerausgänge rücklesen

Gelegentlich ist es bei Applikationen nötig, den tatsächlichen Ausgangszustand in dem Programm zu wissen. Ein Beispiel kann z. B. eine Fehlererkennung im Programm sein. Dies kann durch die Rückführung des Optokopplerausgangs zu einem der Optokopplereingänge erfolgen. Im folgenden Beschaltungsbeispiel wird der Ausgang x mit dem Eingang y verbunden. Beachten Sie bitte, daß in dieser Schaltungsversion das Ergebnis des Eingangs negiert ist. Wenn der Ausgang geschaltet ist, liegt am Transistor keine Spannung an und somit zeigt der Eingang eine "0" an. Zudem fließt bei nicht geschaltetem Ausgang über den Optokoppler-Eingang und damit auch über den Verbraucher ein geringer Strom (bei 24V ca. 7mA).

8. Zähler

Das Modul stellt an den ersten 6 Optokopplereingängen (DIN0 bis DIN5) jeweils einen eigenständigen, hardwareunterstützten 32bit Zähler zur Verfügung. Bei Bedarf können diese einzeln aktiviert werden und reagiert bei jeder steigenden Flanke durch die Inkrementierung des Zählerstandes. Ein abrufbares Flag signalisiert jeweils einen Overflow. Damit bei einer außerplanmäßigem Unterbrechen der Spannungsversorgung die Zählerstände nicht verloren gehen, werden diese ungefähr alle 100us gesichert. Liegt dann am Modul wieder eine Spannungsversorgung an, werden die gesicherten Werte automatisch in die Zählerregister geladen.

Funktionen	Beschreibung
Start	Startet den Zähler bzw. gibt den Eingang frei
Stop	Stopt den Zähler, Signal an dem jeweiligen Eingang werden ignoriert
Reset	Setzt den Zählerstand auf 0
Zählerstand lesen	Liest den aktuellen Zählerstand
Overflowflag lesen	Liest das Overflowflag
Clear Overflowflag	Setzt das Overflowflag zurück

9. Programmierbare Logik

In verschiedenen Anwendungen kann es von Vorteil sein, wenn das Modul selbständig auf Eingangssignale bzw. Änderungen an den Eingängen reagiert. Ohne diese Möglichkeit kann eine Änderung am Eingang nur durch regelmäßige Abfrage der Eingänge mittels Polling erkannt werden. Dieses Polling verursacht eine erhöhte Auslastung des Netzwerkes und des Rechners.

Um diese eigenständige Reaktion des Moduls zu erzeugen werden vier Logikzweige mit jeweils vier Logikeingängen, einer Verknüpfung sowie einem Logikausgang zur Verfügung gestellt. In Abbildung 8.1 ist einer dieser Zweige zu sehen.

Den Logikeingängen bzw. Ausgängen können einzelne Funktionen wie später näher erläutert zugewiesen werden.

9.1 Logikzweig

Im Modul können vier verschiedene Logikzweige verwendet werden. Jeder Zweig hat vier Eingänge, eine Logikverknüpfung (UND, ODER) und einen Ausgang. Den Logikeingängen sowie Logikausgängen können verschiedene Funktionen zugewiesen werden. Dabei kann die Logikverknüpfung eventgesteuert sein (z.B. Flanke an den Eingängen invertiert Optokopplerausgang oder sendet Nachricht an PC) als auch zustandsgesteuert (z.B. wenn Eingang DIN0 und DIN1 gleich HIGH dann ist DOUT0 ebenfalls HIGH). Bei der Auswahl der Funktionen ist darauf zu achten, dass bei einem Eventausgang (z.B. Message an PC oder Optokopplerausgang DOUT1 setzen) immer ein Eventeingang im Logikzweig vorhanden ist. Ist einem Logikausgang die Funktion NONE zugewiesen, so ist dieser Zweig automatisch deaktiviert und schont damit die Prozessorressourcen.

9.2 Logikeingänge

Jedem Logikzweig stehen vier Logikeingänge zur Verfügung. Diesen können folgende Funktionen zugewiesen werden.

Eingangsfunktion	Beschreibung	zustand/event
TRUE	Eingang liefert immer eine 1	zustand
FALSE	Eingang liefert immer eine 0	zustand
DINxx	Logikeingang wird mit dem jeweiligen Optokopplereingang verknüpft	zustand
DINxx_EDGE	Logikeingang erkennt eine steigende Flanke und liefert für einen Zweigtakt (~10ms) eine 1	event

Als Ausgangsbasis für die Logikeingänge werden die Optokopplereingänge in regelmäßigen Zeitabständen (ca. 1ms) abgetastet. Hierbei werden Logikpegel oder Pegeländerungen erfaßt und an die programmierbare Logik übergeben.

9.3 Logikverknüpfung

Jedem Logikzweig steht eine Logikverknüpfung zur Verfügung. Dieser können folgende Funktionen zugewiesen werden.

Ausgangsfunktion	Beschreibung	zustand/event				
AND	UND-Verknüpfung	zustand/event				
OR	ODER-Verknüpfung	zustand/event				

9.4 Logikausgänge

Jedem Logikzweig steht ein Logikausgang zur Verfügung. Diesem können folgende Funktionen zugewiesen werden.

Ausgangsfunktion	Beschreibung	zustand/event
NONE	Logikzweig ist deaktiviert	zustand
SEND_MESSAGEx	Modul sendet eine Messages(x) an den PC	event
WRITE_DOUTxx	Optokopplerausgang wird mit dem Ergebnis der Logikverknüpfung beschrieben	zustand
,SET_DOUTxx	Bei einer 1 der Verknüpfung wird der jeweilige Optokopplerausgang durchgeschaltet	event
CLEAR_DOUTxx	Bei einer 1 der Verknüpfung wird der jeweilige Optokopplerausgang gesperrt	event
TOGGLE_DOUTxx	Bei einer 1 der Verknüpfung wird der jeweilige Optokopplerausgang invertiert	event

9.5 Message an PC schicken

Möchten Sie bei einem Event eine Benachrichtigung an den PC bzw. an die Anwendung senden, geht dies über die Message-Ausgänge. Es gibt ingesgammt 4 Message-Funktionsausgänge, von welcher jeder eine eigene individuelle Nachricht an den PC schickt.

Für diese Funktion muss in dem Programm eine weitere TCP/IP-Verbindung mit dem Modul im Receiver-Modus aufgebaut werden. Liegt nun z.B. eine steigende Flanke an einem der zu überwandenden Eingänge der programmierbaren Logik an, wird automatisch eine Message an den Receiver gesendet. Diese Message muss nicht mit einer Rückantwort bestätigt werden.

Folgendes Beispiel veranschaulicht die Konfiguration.

In diesem Beispiel soll bei jeder steigenden Flanke an DIN00 eine Nachricht an den PC gesendet werden. Dafür wird für den Eingangsfunktionsblock IN0 die Funktion DIN00_EDGE ausgewählt und für alle anderen TRUE. Als Gater wird eine UND-Verknüpfung (AND) und als Ausgang SEND_MESSAGE1 gewählt. Liegt nun eine steigende Flanke an DIN00 an, so wird an den TCP/IP Client mit der Receiver-Verbindung ein 12 Byte langes Array gesendet.

EXDUL-518E / EXDUL-518S © 2021 by Messcomp Datentechnik GmbH

Damit der PC unterscheiden kann von welchem Logickblock die Meldung erfolgt stehen 4 Massage-Arrays zur Verfügung. In folgender Tabelle werden die 4 möglichen Byte-Arrays dargestellt. Die ersten 4 Byte stellen den Befehl, in diesem Fall immer 0x0E, sowie das Längenbyte (immer 2) dar. Byte 4 bis Byte 6 sind reserviert und haben den Wert 0x00. In Byte 7 steht der Message-Index. Wurde als Ausgang die Message1 ausgewählt steht in diesem Byte der Wert 1. Zur Kontrolle der Reihenfolge der gesendeten Meldungen, bzw. um auch das Fehlen einer Meldung erkennen zu können beinhaltet des Byte-Array zusätzlich einen Zähler. Byte 8 bis Byte 11 entsprechen dem Wert des Receivernachten-Zählers. Bei jeder Nachricht an den PC wird dieser Wert incrementiert.

Receivernachrichtenzähler: Wert = dd*0x100000 + cc*0x10000 + bb*0x100 + aa

Byte-Index	0	1	2	3	4	5	6	7	8	9	10	11
Message1	0x0E	0x00	0x00	0x02	0x00	0x00	0x00	0x01	aa	bb	CC	dd
Message2	0x0E	0x00	0x00	0x02	0x00	0x00	0x00	0x02	aa	bb	CC	dd
Message3	0x0E	0x00	0x00	0x02	0x00	0x00	0x00	0x03	aa	bb	CC	dd
Message4	0x0E	0x00	0x00	0x02	0x00	0x00	0x00	0x04	aa	bb	CC	dd

9.6 Timing der programmierbaren Logik

	typ. Bearbeitungsfrequenz
Logikzweig-Update	100 Hz
Input-Abtastung	1 kHz

10. Watchdog-Timer (WDT)

Das EXDUL-Modul besitzt einige Sicherheitsmechanismen für eine stabile Kommunikation. Sollte es jedoch z.B. Aufgrund von Routingproblemen zu einer Unterbrechung der Kommunikation kommen und ein Wiederaufbau der Verbindung nicht mehr möglich sein, kann der integrierte Watchdog-Timer des Moduls zu Problembehebung verwendet werden.

Zu Beginn der Applikation muss der WDT mit einer ausgewählten Periodendauer initialisiert und gestartet werden. Wird der Timer nicht innerhalb der eingestellten Periodendauer durch einen PC-Befehl zurückgesetzt, so wird ein vollständiger Reset des EXDUL-Moduls durchgeführt. Beim Auslösung des Watchdog-Resets wird das entsprechende Flag im Error-Register gesetzt. Hierdurch kann später durch das Überprüfen dieses Bits der Reset erkannt werden.

11. Error-Register

Kommt es zu außerplanmäßigen Fehlern (z.B. einem Watchdog-Reset), so werden diese in den beiden Error-Registern angezeigt. Tritt ein Fehler auf, so wird das dem Fehler zugewiesenem Bit gesetzt. Die Fehlerregister bleiben auch nach einem Reset oder dem Entfernen der Spannungsversorgung erhalten. Die Register können mit dem entsprechenden Befehl zurückgesetzt werden.

Error-Register 0	Bit31 Bit2	Bit1	Bit0						
Bedeutung	reserviert	WDT_SW	reserviert						
Error-Register 1	Bit31 Bit0								
Bedeutung	reserviert								

Beschreibung:

WDT_SW: 1 = Der Watchdog-Reset wurde ausgeführt.

12. Informations-, LCD- und Userregister

12.1 Register HW-Kennung und Seriennummer

Byte	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	E	Х	D	U	L	-	5	1	8			V	1		0	1
HVV-Kennung	45 _{hex}	58hex	44 _{hex}	55 _{hex}	4Chex	2Dhex	35 _{hex}	31 _{hex}	38 _{hex}	20 _{hex}	20 _{hex}	56 _{hex}	31 _{hex}	3E _{hex}	30 _{hex}	31 _{hex}
C/N	1	0	4	4	0	2	6									
5/IN	31 _{hex}	30 _{hex}	34 _{hex}	34 _{hex}	30 _{hex}	32 _{hex}	36 _{hex}									

Tabelle 12.1 Register HW-Kennung und Seriennummer

Im Register HW-Kennung ist der Modulname sowie die Version der Firmware abgelegt und kann zur Feststellung der Produkt-Identität vom User gelesen werden. In der o. a. Tabelle sind als Beispiel in der Zeile HW-Kennung jeweils der Hex-Wert und das dazugehörige ASCII-Zeichen für das Modul EXDUL-518 mit Firmware-Version 1.01 dargestellt.

Das Register Serien-Nummer kann vom Anwender lediglich gelesen werden. Die Serien-Nummer in der o. a. Tabelle dient als Formatbeispiel. In der Zeile S/N ist jeweils der Hex-Wert und darüber das dazugehörige ASCII-Zeichen für die Serien-Nummer 1044026 dargestellt.

Byte	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
HeerA																
USERA	20 _{hex}															
HeerP																
Userb	20 _{hex}															
USerLCDIII	20 _{hex}															
UserLCD2m*																
	20 _{hex}															

12.2 Speicherbereiche UserA, UserB, UserLCD1m* und UserLCD2m*

In den Registern UserA, UserB, UserLCD1m* und UserLCD2m* können jeweils 16 Stellen (16 Byte) zur eigenen Verwendung genutzt werden. Die Daten bleiben beim Ausschalten erhalten, ein Default-Reset setzt diese Register in die Werkseinstellung (Auslieferungszustand) zurück. Im Auslieferungszustand steht in allen vier User-Speicherbereichen an jeder Stelle der Hex-Wert 20, der im ASCII-Code einem Leer-Zeichen entspricht. In der o. a. Tabelle sind jeweils der Hex-Wert und darüber das dazugehörige ASCII-Zeichen dargestellt.

12.3 Display-Register UserLCD-Zeile1*, UserLCD-Zeile2* und LCD-Kontrast*

Die Register UserLCD-Zeile1 und UserLCD-Zeile2 dienen bei aktivierten UserLCD-Modus zum Beschreiben der beiden LCD-Zeilen mit jeweils 16 beliebigen Zeichen. Mit Übernahme der Daten erfolgt die Anzeige im Display anstelle der Daten aus UserLCD1m* und UserLCD2m*. Die Daten in den Registern UserLCD-Zeile1 und UserLCD-Zeile2 bleiben beim Ausschalten **nicht** erhalten. Über das Register LCD-Kontrast ist der Display-Kontrast einstellbar, der auch beim Ausschalten erhalten bleibt.

*: Nur für EXDUL-518E zutreffend, bei EXDUL-518S ohne Funktion!

13. Installation des Treibers

Für das Ethernetmodul EXDUL-518 ist kein Treiber notwendig. Voraussetzung ist eine bereitgestellte Netzwerkverbindung von PC (Netzwerkkarte mit Treiber) oder mobilen Device. Für den direkten Zugriff auf das Modul werden die bei vielen Hochsprachen wie C, C++, C#, Visual Basic oder Java vorhandenen TCP/IP-Libraries benötigt. Beispiele in mehreren Programmiersprachen für den Zugriff befinden sich auf der mitgelieferten CD und auf unserer Website www.messcomp.com.

14. Programmierung

14.1 Einführung

Die Programmierung erfolgt mit Hilfe des Standard TCP/IP-Protokolls und somit über sogenannte TCP/IP-Sockets, für die in vielen gängigen Programmiersprachen Standardbibliotheken vorhanden sind. Eine einfache und schnelle Implementierung ermöglicht die Verwendung des .Net Frameworks von Microsoft. Durch das Verwenden des Standard-Protokolls kann das Modul neben Windows auch mit einer Vielzahl von anderen Betriebssystemen wie Ubuntu (Linux-basierend) oder Android verbunden werden. Verschiedene Programmierbeispiele sind auf der beiliegenden CD und auf unserer Website bereitgestellt.

14.2 Programmierarten

Für den Zugriff auf das EXDUL-Modul gibt es mehrere Möglichkeiten. So kann für die Programmierung unter Windows und .NET die Library EXDUL. dll verwendet werden. Diese ermöglicht eine leichten und schnellen Einstieg, um den Zugriff auf das Modul zu programmieren. Des Weiteren können auch TCP und Socket Libraries verwendet werden, welche bei vielen Programmiersprachen wie C# oder Java vorhanden sind. Sie ermöglichen oft eine breite Einstellmöglichkeit der Schnittstelle. LabVIEW-Anwender können ebenfalls mit Hilfe der EXDUL.dll oder den TCP-Funktionsblöcken leicht auf das Modul zugreifen.

14.3 Programmierung unter Windows mit der .NET EXDUL.dll Library

Wird für den Modul-Zugriff eine .NET-Programmiersprache verwendet (C#, C++.NET oder VB.NET), so kann die Library EXDUL.dll verwendet werden. Sie besitzt einen objektorientierten Aufbau, in welchem jedes EXDUL-Modul durch ein Objekt mit ihren Methoden dargestellt wird.

Bei der Entwicklung der Library wurde auf eine möglichst einheitliche API zwischen den unterschiedlichen EXDUL-Modulen geachtet.

Dies ermöglicht es dem Anwender, bei Bedarf ohne großen Programmieraufwand von z.B. einem USB-EXDUL-Modul auf ein Ethernet-EXDUL-Modul (z.B. EXDUL-318 -> EXDUL-518) zu wechseln.

Befehlsübersicht für EXDUL.dll-Library

Open:

bool Open()

Rückgabewerte: true	wenn erfolgreich / false bei Fehler
Zusammenfassung: Verb	indung zu Modul aufbauen

Close

void_Close() Zusammenfassung: Verbindung zu Modul schließen

Schreiben in Inforegister:

void SetModulInfo (byte type, string info)

Parameter:

type: Info-Typ (siehe Handbuch) info: Bis zu 16 Zeichen langer Info-String Beschreibt die Modul-Informationsregister

Zusammenfassung:

Infobereich	Info-Byte
UserA	0
UserB	1

Lesen aus Inforegister:

string GetModulInfo(byte type)

Parameter: Rückgabewerte: Zusammenfassung: type: Info-Typ (siehe Handbuch)

Gibt das Register "type" als string zurück Liest die Modul-Information-Register aus

Infobereich	Info-Byte
UserA	0
UserB	1
Hardwarekennung	3
Seriennummer	4

Schreiben in LCD-Register UserLCD:

void SetUserLCD(byte lir	ne, string text)
Parameter:	<i>line</i> : 0 = 1. Zeile / 1 = 2. Zeile
	text: Bis zu 16 Zeichen langer LCD-Text
Zusammenfassung:	Beschreibt die UserLCD-Register. Der Parameter
	line legt die Zeile (0 oder 1) fest und text den
	Text aus 16 Zeichen.

Schreiben in LCD-Register UserLCDm:

void SetUserLCDm(byte	line, string text)
Parameter:	<i>line</i> : 0 = 1. Zeile / 1 = 2. Zeile
	text: Bis zu 16 Zeichen langer LCD-Text
Zusammenfassung:	Beschreibt die UserLCDm-Register. Der
	Parameter line legt die Zeile (0 oder 1) fest und
	text den Text aus 16 Zeichen

Schreiben des LCD-Modes:

void SetLCDMode(<u>byte</u> mode) Parameter: mode: LCD-Modus Zusammenfassung: Setzt den LCD-Modus fest

LCD-Modus	LCD-Modus-Byte
IO-Mode	0
User-Mode	1

Lesen des LCD-Modes:

byteGetLCDMode()Rückgabewerte:LCD-ModusZusammenfassung:Liest den LCD-Modus aus

LCD-ModusLCD-Modus-ByteIO-Mode0User-Mode1

Schreiben LCD-Kontrastwert:

void SetLCDContrast(ushort contrast)Parameter:contrast: Wert zwischen 0 und 4095 (empfohlen
800 bis 1800)Zusammenfassung:Legt den LCD-Kontrast fest

Lesen LCD-Kontrastwert:

ushortGetLCDContrast()Rückgabewerte:LCD-KontrastZusammenfassung:Liest den LCD-Kontrast aus

Optokopplerausgänge lesen:

uint GetOptoOut() Rückgabewerte:Zustand der OptokopplerausgängeZusammenfassung:Liest den Zustand der Optokopplerausgänge

Optokopplerausgänge schreiben:

void SetOptoOut(<u>uint</u> value)				
Parameter:	value: Zustand der Ausgänge			
Zusammenfassung:	Setzt die Optokopplerausgänge			

Optokopplerausgang schreiben:

channel, <u>uint</u> <i>value</i>)
channel: Index des Ausgangskanals
value: Zustand der Ausgänge
Setzt die Optokopplerausgänge

Optokopplereingänge lesen:

uint GetOptoIn() Zusammenfassung:

Rückgabewerte: Aktueller Zustand der Optokopplereingänge Liest den aktuellen Zustand an den Optokopplereingängen

Zähler starten:

void StartCounter(byte index)Parameter:index: Counter-IndexZusammenfassung:Startet den Zähler mit der Nummer index

.....

Zähler stoppen:

void StopCounter(byte in	dex)
Parameter:	index: Counter-Index
Zusammenfassung:	Stoppt den Zähler mit der Nummer index

Zähler resetten:

void ResetCounter(byte in	ndex)
Parameter:	index: Counter-Index
Zusammenfassung:	Setzt den Zählerstand des Zählers mit der
	Nummer index zurück auf 0

Zählerstand lesen:

unt ReadCounter(byte in	idex)
Parameter:	index: Counter-Index
Rückgabewerte:	Zählerstand
Zusammenfassung:	Liest den Zählerstand des Zählers mit der Nummer index aus

Overflow-Flag lesen:

bool ReadOverflowFlag	Counter(<u>byte</u> index)		
Parameter:	index: Counter-Index		
Rückgabewerte:	Overflowflag false = kein Overflow		
	true = Overflow		
Zusammenfassung:	Liest das Overflowflag des Zählers mit der		
	Nummer index aus		

Overflow-Flag rücksetzen:

void ResetOverflowFlagCounter(<u>byte</u> index) Parameter: index: Counter-Index Zusammenfassung: Setzt das Overflowflag des Zählers mit der Nummer index zurück

Werksreset:

void DefaultReset() Zusammenfassung:

Setzt das Modul auf die Werkseinstellung zurück. Nach dem Befehl muss das Modul geschlossen und wieder neu geöffnet werden

.

14.4 Programmierung mit TCP-Libraries

Durch die Möglichkeit mit Standard TCP/Socket-Libraries auf das Modul zugreifen zu können, kann der Anwender mit einer Vielzahl an Sprachen seine Anwendung auf verschiedenen Platformen programmieren. So kann unter Windows neben dem .NET-Framework auch Delphi oder Java verwendet werden. Auch können Anwendungen auf vielen Linux basierten Betriebssystemen mit z.B. C oder Java entworfen werden. Dabei ist zu beachten, dass das Modul immer als Server fungiert.

14.4.1 Kommunikation mit dem EXDUL-518

Der Datenaustausch erfolgt durch Senden bzw. Empfangen von Byte-Arrays mit unterschiedlicher Länge über die TCP/IP-Schnittstelle.

Jeder erlaubte Sendestring wird mit einem definierten Ergebnis- bzw. Bestätigungsstring beantwortet.

Vor dem Senden eines Strings muss der letzte Ergebnis- bzw. Bestätigungsstring gelesen werden.

Grafik 11.4 Kommunikationsmodell

14.4.2 Befehls- und Datenformat

Der Datenaustausch erfolgt durch Senden und Empfangen von Byte-Arrays. Jedes zu sendende bzw. zu empfangende Byte-Array besteht aus mindestens 4 Bytes. Dabei stellen die ersten drei Bytes den Befehl und das vierte die Anzahl der noch folgenden 4 Byte-Blöcke dar.

Befehl Byte 0	Befehl Byte 1	Befehl Byte 2	Längenbyte
,	,	· ·	

Die Anzahl der 4-Byte-Blöcke variiert von Befehl zu Befehl und ist zum Teil von der zu sendenden Datenmenge abhängig. Genauere Informationen befinden sich bei den einzelnen Befehlsbeschreibungen.

14.4.3 Passwortschutz

Um das Modul vor unbefugten Zugriffen zu schützen, kann für den Datenaustausch ein einfacher Passwortschutz verwendet werden. Ist dieser aktiviert (siehe Befehl Securitykonfiguration), so muss an jedes gesendetes Byte-Array das richtige Passwort (+8 Bytes) angehängt werden. Ist das Passwort falsch oder wurde es nicht dem Befehlsstring hinzugefügt, so wird eine Error-Antwort zurückgeschickt. Die Rückantwort vom Modul bleibt unverändert

Byte	Senden	Empfangen	Beschreibung
0	08	08	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	00	00	Befehlscode 3. Byte
3	03 (→ 12Byte)	00	Längenbyte
4	00		r/w Byte
5	0w 00 (gesperrt) 01 (durchgeschaltet)		Optokopplerzustand
6	00		reserviert
7	00		reserviert
8	31 _{hex}		Passwort 1. Zeichen 1asci
9	31hex		Passwort 2. Zeichen 1asci
10	31 _{hex}		Passwort 3. Zeichen 1 _{asci}
11	31 _{hex}		Passwort 4. Zeichen 1 _{asci}
12	31hex		Passwort 5. Zeichen 1asci
13	31hex		Passwort 6. Zeichen 1asci
14	31hex		Passwort 7. Zeichen 1asci
15	31 _{hex}		Passwort 8. Zeichen 1 _{asci}

Beispiel: Optokopplerausgänge schreiben mit aktiviertem Passwortschutz und dem Default-Passwort "11111111"

Der normale Befehl ohne Passwortschutz beinhaltet nur 8 Bytes und im Längenbyte steht der Wert 1. Wie in der Tabelle zu sehen, wurden nun 8 weitere Bytes, in welchen das Passwort steht, angehängt. Zusätzlich muss das Längenbyte um den Wert 2 (+8Byte) erhöht werden. Die Rückantwort beinhaltet kein Passwort und entspricht dem normalen Antwortarray ohne Passwort.

14.4.4 Befehlsübersicht

Hexcode	Beschreibung
0C 00 00	Inforegister lesen und schreiben
0C 00 03	LCD-Register lesen und schreiben
0C 00 08	Netzwerkkonfigurationen lesen und schreiben
0C 00 0C	Securitykonfigurationenen lesen und schreiben
0C 00 0D	Passwort ändern
08 00 00	Optokopplerausgänge lesen und schreiben
08 00 01	Optokopplereingänge bearbeiten
09 00 00	Zähler0
09 00 01	Zähler1
09 00 02	Zähler2
09 00 03	Zähler3
09 00 04	Zähler4
0C 01 01	Software Watch Dog Timer
0C 02 10	Initialisierung eines programmierbaren Logikzweiges
0C 03 00	Receivermodus aktivieren/deaktivieren + Messagezähler lesen
FF 00 00	Fehlerregister auslesen/rücksetzen

14.4.5 Befehlszusammensetzung

Schreiben in Inforegister

Das EXDUL-Modul stellt mehrere beschreibbare Inforegister zur Verfügung. UserA/B sind zwei 16-Byte-Bereiche für den Anwender, um Informationen in einem nicht-flüchtigen Speicher (FLASH) zu sichern. Die Register sind nur als ganzer 16-Byte-Block beschreibbar.

Infobereich	Info-Byte
UserA	0
UserB	1

Byte	Senden	Empfangen	Beschreibung
0	0C	0C	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	00	00	Befehlscode 3. Byte
3	05	00	Längenbyte \rightarrow 20 Byte
4	00 (UserA) 01 (UserB)		Info-Byte
5	00		reserviert
6	00		reserviert
7	00		Schreibfunktion Infobereich
8	45		Daten 1. Zeichen Eas
9	58		Daten 2. Zeichen Xasci
10	44		Daten 3. Zeichen Dasci
11	55		Daten 4. Zeichen Uasci
12	4C		Daten 5. Zeichen Lasci
13	2D		Daten 6. Zeichen -asci
14	35		Daten 7. Zeichen 5asci
15	31		Daten 8. Zeichen 1 _{asci}
16	38		Daten 9. Zeichen 8asci
17	20		Daten 10. Zeichen [Leer] _{asci}
18	20		Daten 11. Zeichen [Leer]asci
19	20		Daten 12. Zeichen [Leer]asci
20	20		Daten 13. Zeichen [Leer]asci
21	20		Daten 14. Zeichen [Leer]asci
22	20		Daten 15. Zeichen [Leer] _{asci}
23	20		Daten 16. Zeichen [Leer]asci

Beispiel: Schreiben der Zeichenfolge EXDUL-518 in Register UserA und UserB

Lesen aus Inforegister

Das EXDUL-Modul besitzt mehrere 16-Byte breite Infobereiche, in welchen Modulinformationen wie die Seriennummer oder die Hardwarekennung stehen. Des Weiteren kann der Anwender auch die beschreibbaren User-Register auslesen.

Infobereich	Info-Byte
UserA	0
UserB	1
Hardwarekennung	3
Seriennummer	4

Info: Alle Infobereiche lassen sich nur als ganzer 16-Byte-Block auslesen.

Beispiel: Infobereich UserA auslesen (User-String = "EXDUL-518")

Gesendet wird ein 8Byte langer Block und empfangen ein 20Byte langer Block mit Inhalt von UserA bzw. UserB

Byte	Senden	Beschreibung	Empfangen	Beschreibung
0	0C	Befehlscode 1. Byte	0C	Befehlscode 1. Byte
1	00	Befehlscode 2. Byte	00	Befehlscode 2. Byte
2	00	Befehlscode 3. Byte	00	Befehlscode 3. Byte
3	01	Längenbyte → 4Byte	04	Längenbyte → 16Byte
4	00 (UserA) 01 (UserB)	Info-Byte	45	Daten 1. Zeichen Easci
5	00	reserviert	58	Daten 2. Zeichen Xasci
6	00	reserviert	44	Daten 3. Zeichen Dasci
7	01	Lesefunktion Infobereich	55	Daten 4. Zeichen Uasci
8			4C	Daten 5. Zeichen Lasci
9			2D	Daten 6. Zeichen -asci
10			35	Daten 7. Zeichen 5asci
11			31	Daten 8. Zeichen 1asci
12			38	Daten 9. Zeichen 8asci
13			20	Daten 10. Zeichen [Leer]asci
14			20	Daten 11. Zeichen [Leer]asci
15			20	Daten 12. Zeichen [Leer]asci
16			20	Daten 13. Zeichen [Leer]asci
17			20	Daten 14. Zeichen [Leer]asci
18			20	Daten 15. Zeichen [Leer]asci
19			20	Daten 16. Zeichen [Leer]asci

Beispiel: Infobereich Hardwarekennung auslesen Gesendet wird ein 8Byte langer Block und empfangen ein 20Byte langer Block mit der Hardwarekennung

Byte	Senden	Beschreibung	Empfangen	Beschreibung
0	0C	Befehlscode 1. Byte	0C	Befehlscode 1. Byte
1	00	Befehlscode 2. Byte	00	Befehlscode 2. Byte
2	00	Befehlscode 3. Byte	00	Befehlscode 3. Byte
3	01	Längenbyte \rightarrow 4Byte	04	Längenbyte → 16Byte
4	04	Info-Byte	45	Daten 1. Zeichen Easci
5	00	reserviert	58	Daten 2. Zeichen Xasci
6	00	reserviert	44	Daten 3. Zeichen Dasci
7	01	Lesefunktion Infobereich	55	Daten 4. Zeichen U _{asci}
8			4C	Daten 5. Zeichen Lasci
9			2D	Daten 6. Zeichen -asci
10			35	Daten 7. Zeichen 5asci
11			31	Daten 8. Zeichen 1 _{asci}
12			38	Daten 9. Zeichen 8 _{asci}
13			20	Daten 10. Zeichen [Leer]asci
14			20	Daten 11. Zeichen [Leer]asci
15			20	Daten 12. Zeichen [Leer]asci
16			20	Daten 13. Zeichen [Leer]asci
17			20	Daten 14. Zeichen [Leer]asci
18			20	Daten 15. Zeichen [Leer]asci
19			20	Daten 16. Zeichen [Leer]asci

Beispiel: Infobereich Seriennummer auslesen Gesendet wird ein 8Byte langer Block und empfangen ein 20Byte langer Block mit der Seriennummer

Byte	Senden	Beschreibung	Empfangen	Beschreibung
0	0C	Befehlscode 1. Byte	0C	Befehlscode 1. Byte
1	00	Befehlscode 2. Byte	00	Befehlscode 2. Byte
2	00	Befehlscode 3. Byte	00	Befehlscode 3. Byte
3	01	Längenbyte → 4Byte	03	Längenbyte → 16Byte
4	04	Info-Byte	31	Daten 1. Zeichen 1 _{dez}
5	00	reserviert	30	Daten 2. Zeichen 0 _{dez}
6	00	reserviert	34	Daten 3. Zeichen 4 _{dez}
7	01	Lesefunktion Infobereich	34	Daten 4. Zeichen 4 _{dez}
8			30	Daten 5. Zeichen Odez
9			32	Daten 6. Zeichen 2 _{dez}
10			36	Daten 7. Zeichen 6dez
11				reserviert
12				reserviert
13				reserviert
14				reserviert
15				reserviert
16				reserviert
17				reserviert
18				reserviert
19				reserviert

Schreiben in LCD-Register

Das EXDUL-Modul stellt mehrere beschreibbare LCD-Register zur Verfügung. UserLCD1 und UserLCD2 entsprechen den beiden Zeilen während der UserMode-LCD-Anzeige. UserLCD1m und UserLCD2m sind zwei 16-Byte-Bereiche, welche direkt in einen nicht-flüchtigen Speicher (FLASH) abgelegt werden und beim Modulstart in die Register UserLCD1m bzw. UserLCD2m geladen werden. Alle Register sind nur als ganze 16-Byte-Blöcke beschreibbar.

LCD-Befehl	LCD-Befehl-Byte
UserLCD1	0
UserLCD2	1
UserLCD1m	2
UserLCD2m	3

Beispiel: Schreiben der Zeichenfolge EXDUL-518 in Register

Byte	Senden	Empfangen	Beschreibung
0	0C	0C	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	03	03	Befehlscode 3. Byte
3	05	00	Längenbyte \rightarrow 20 Byte
4	00 (UserLCD1) 01 (UserLCD2) 02 (UserLCD1m) 03 (UserLCD2m)		LCD-Befehl
5	00		reserviert
6	00		reserviert
7	00		Schreibfunktion
8	45		Daten 1. Zeichen Eas
9	58		Daten 2. Zeichen Xasci
10	44		Daten 3. Zeichen D _{asci}
11	55		Daten 4. Zeichen Uasci
12	4C		Daten 5. Zeichen Lasci
13	2D		Daten 6. Zeichen -asci
14	35		Daten 7. Zeichen 5 _{asci}
15	31		Daten 8. Zeichen 1 _{asci}
16	38		Daten 9. Zeichen 8asci
17	20		Daten 10. Zeichen [Leer]asci
18	20		Daten 11. Zeichen [Leer] _{asci}
19	20		Daten 12. Zeichen [Leer]asci
20	20		Daten 13. Zeichen [Leer]asci
21	20		Daten 14. Zeichen [Leer]asci
22	20		Daten 15. Zeichen [Leer]asci
23	20		Daten 16. Zeichen [Leer]asci

EXDUL-518E / EXDUL-518S © 2021 by Messcomp Datentechnik GmbH

Lesen von LCD-Register

Das EXDUL-Modul stellt mehrere beschreib- bzw. lesbare LCD-Register zur Verfügung. UserLCD1 und UserLCD2 entsprechen den beiden Zeilen während der UserMode-LCD-Anzeige. UserLCD1m und UserLCD2m sind zwei 16-Byte-Bereiche, welche direkt in einen nicht-flüchtigen Speicher (FLASH) abgelegt werden und beim Modulstart in die Register UserLCD1m bzw. UserLCD2m geladen werden. Alle Register sind nur als ganze 16-Byte-Blöcke lesbar.

LCD-Befehl	LCD-Befehl-Byte
UserLCD1 & UserLCD2	0
UserLCD1m & UserLCD2m	2

Byte	Senden	Beschreibung	Empfangen	Beschreibung
0	0C	Befehlscode 1. Byte	0C	Befehlscode 1. Byte
1	00	Befehlscode 2. Byte	00	Befehlscode 2. Byte
2	03	Befehlscode 3. Byte	03	Befehlscode 3. Byte
3	01	Längenbyte → 4 Byte	08	Längenbyte → 32 Byte
4	00 (UserLCD1&2) 02 (UserLCD1m&2m)	LCD-Befehl	45	Daten Zeile1 1. Zeichen E₃s
5	00	reserviert	58	Daten Zeile1 2. Zeichen X _{asci}
6	00	reserviert	44	Daten Zeile1 3. Zeichen Dasci
7	01	Lesefunktion von LCD-Registern	55	Daten Zeile1 4. Zeichen Uasci
8			4C	Daten Zeile1 5. Zeichen Lasci
9			2D	Daten Zeile1 6. Zeichen -asci
10			35	Daten Zeile1 7. Zeichen 5 _{asci}
11			31	Daten Zeile1 8. Zeichen 1asci
12			38	Daten Zeile1 9. Zeichen 8asci
13			20	Daten Zeile1 10. Zeichen [Leer]asci
14			20	Daten Zeile1 11. Zeichen [Leer]asci
15			20	Daten Zeile1 12. Zeichen [Leer]asci
16			20	Daten Zeile1 13. Zeichen [Leer]asci
17			20	Daten Zeile1 14. Zeichen [Leer]asci
18			20	Daten Zeile1 15. Zeichen [Leer]asci
19			20	Daten Zeile1 16. Zeichen [Leer]asci
20			45	Daten Zeile2 1. Zeichen Easci
21			58	Daten Zeile2 2. Zeichen Xasci
22			44	Daten Zeile2 3. Zeichen Dasci
23			55	Daten Zeile2 4. Zeichen Uasci
24			4C	Daten Zeile2 5. Zeichen Lasci
25			2D	Daten Zeile2 6. Zeichen -asci
26			35	Daten Zeile2 7. Zeichen 5asci
27			31	Daten Zeile2 8. Zeichen 1 _{asci}
28			38	Daten Zeile2 9. Zeichen 8asci
29			20	Daten Zeile2 10. Zeichen [Leer]asci
30			20	Daten Zeile2 11. Zeichen [Leer]asci
31			20	Daten Zeile2 12. Zeichen [Leer]asci
32			20	Daten Zeile2 13. Zeichen [Leer]asci
33			20	Daten Zeile2 14. Zeichen [Leer]asci
34			20	Daten Zeile2 15. Zeichen [Leer]asci
35			20	Daten Zeile2 16. Zeichen [Leer]asci

Beispiel: Lesen der Zeichenfolge EXDUL-518 aus Register

EXDUL-518E / EXDUL-518S © 2021 by Messcomp Datentechnik GmbH

Schreiben des LCD-Modes

Die LCD-Anzeige des EXDUL-Moduls stellt mehrere Anzeige-Modi bereit. Diese können mit folgendem Befehl eingestellt werden. Der LCD-Modus wird in einem nicht-flüchtigen Speicher abgelegt und wird auch nach einem Neustart des Moduls verwendet

LCD-Modus	LCD-Modus-Byte
IO-Mode	0
User-Mode	1

Beispiel: Schreiben des LCD-Modes

Byte	Senden	Beschreibung	Empfangen	Beschreibung
0	0C	Befehlscode 1. Byte	0C	Befehlscode 1. Byte
1	00	Befehlscode 2. Byte	00	Befehlscode 2. Byte
2	03	Befehlscode 3. Byte	03	Befehlscode 3. Byte
3	02	Längenbyte → 8 Byte	00	Längenbyte \rightarrow 0 Byte
4	04	LCD-Befehl LCD-Mode		
5	00	reserviert		
6	00	reserviert		
7	00	Schreibfunktion		
8	00 (IO-Mode) 01 (User-Mode)	LCD-Modus		
9	00	reserviert		
10	00	reserviert		
11	00	reserviert		

Lesen des LCD-Modes

Die LCD-Anzeige des EXDUL-Moduls stellt mehrere Anzeige-Modi bereit. Der eingestellte LCD-Modus kann mit folgendem Befehl ausgelesen werden.

LCD-Modus	LCD-Modus-Byte
IO-Mode	0
User-Mode	1

Beispiel: Lesen des LCD-Modes

Byte	Senden	Beschreibung	Empfangen	Beschreibung
0	0C	Befehlscode 1. Byte	0C	Befehlscode 1. Byte
1	00	Befehlscode 2. Byte	00	Befehlscode 2. Byte
2	03	Befehlscode 3. Byte	03	Befehlscode 3. Byte
3	01	Längenbyte → 4 Byte	01	Längenbyte → 4 Byte
4	04	LCD-Befehl LCD-Mode	00 (IO-Mode) 01 (User-Mode)	LCD-Modus
5	00	reserviert	00	reserviert
6	00	reserviert	00	reserviert
7	01	Lesefunktion	00	reserviert

Schreiben LCD-Kontrastwert

Über diesen Befehl ist der Display-Kontrast einstellbar. Werte zwischen 0 bis 4095 werden akzeptiert. Der Display-Kontrast verringert sich mit ansteigendem Wert. Eine angenehme Darstellung wird im Bereich 800 bis 1800 erreicht.

Byte	Senden	Beschreibung	Empfangen	Beschreibung
0	0C	Befehlscode 1. Byte	0C	Befehlscode 1. Byte
1	00	Befehlscode 2. Byte	00	Befehlscode 2. Byte
2	03	Befehlscode 3. Byte	03	Befehlscode 3. Byte
3	02	Längenbyte → 8 Byte	00	Längenbyte → 0 Byte
4	0B	LCD-Befehl LCD-Kontrast		
5	00	reserviert		
6	00	reserviert		
7	00	Schreibfunktion		
8	50	Kontrastwert (Lowbyte - 00FF)		
9	03	Kontrastwert (Highbyte - 000F)		
10	00	reserviert		
11	00	reserviert		

Beispiel: Schreiben Display-Kontrast-Wert 800

Lesen LCD-Kontrastwert

Über diesen Befehl ist der Display-Kontrast auslesbar. Der Wert kann zwischen 0 bis 4095 liegen. Der Display-Kontrast verringert sich mit ansteigendem Wert. Eine angenehme Darstellung wird im Bereich 800 bis 1800 erreicht.

Byte	Senden	Beschreibung	Empfangen	Beschreibung
0	0C	Befehlscode 1. Byte	0C	Befehlscode 1. Byte
1	00	Befehlscode 2. Byte	00	Befehlscode 2. Byte
2	03	Befehlscode 3. Byte	03	Befehlscode 3. Byte
3	01	Längenbyte → 4 Byte	01	Längenbyte → 4 Byte
4	0B	LCD-Befehl LCD-Kontrast	50	Kontrastwert (Lowbyte - 00FF)
5	00	reserviert	03	Kontrastwert (Highbyte - 000F)
6	00	reserviert	00	reserviert
7	01	Lesefunktion	00	reserviert

Beispiel: Lesen Display-Kontrast-Wert 800

EXDUL-518E / EXDUL-518S © 2021 by Messcomp Datentechnik GmbH

Schreiben Netzwerkkonfigurationen

Dieser Befehl ermöglicht das Abändern aller Netzwerkkonfigurationen wie IP-Adresse, Subnetmaske, Hostname, Gateway, DNS-Adressen sowie die Einstellung der DHCP-Client-Funktion.

Beispiel: Schreiben der Netzwerkkonfigurationen

Hostname = "EXDUL-518", IP = 192.168.0.63, Subnetzmaske = 255.255.255.0, Gateway = 192.168.0.1, Primary DNS = 192.168.0.1, Secondary DNS = 217.237.151.115

Byte	Senden	Beschreibung	Empfangen	Beschreibung
0	0C	Befehlscode 1. Byte	0C	Befehlscode 1. Byte
1	00	Befehlscode 2. Byte	00	Befehlscode 2. Byte
2	08	Befehlscode 3. Byte	08	Befehlscode 3. Byte
3	0B	Längenbyte → 44 Byte	00	Längenbyte → 0 Byte
4	00	reserviert		
5	00	reserviert		
6	00	reserviert		
7	00	Schreibfunktion		
8	45	Hostname 1. Zeichen Easci		
9	58	Hostname 2. Zeichen Xasci		
10	44	Hostname 3. Zeichen Dasci		
11	55	Hostname 4. Zeichen U _{asci}		
12	4C	Hostname 5. Zeichen Lasci		
13	2D	Hostname 6. Zeichen -asci		
14	35	Hostname 7. Zeichen 5asci		
15	31	Hostname 8. Zeichen 1 _{asci}		
16	38	Hostname 9. Zeichen 8 _{asci}		
17	20	Hostname 10. Zeichen [Leer]asci		
18	20	Hostname 11. Zeichen [Leer]asci		
19	20	Hostname 12. Zeichen [Leer]asci		
20	20	Hostname 13. Zeichen [Leer]asci		
21	20	Hostname 14. Zeichen [Leer]asci		
22	20	Hostname 15. Zeichen [Leer]asci		
23	20	Hostname 16. Zeichen [Leer]asci		
24	3F	IP-Adresse 4. Byte Dezimalwert 63		
25	0	IP-Adresse 3. Byte Dezimalwert 0		
26	A8	IP-Adresse 2. Byte Dezimalwert 168		
27	C0	IP-Adresse 1. Byte Dezimalwert 192		

wasco®

28	00	Subnetmaske 4.Byte Dezimalwert 0	
29	FF	Subnetmaske 3.Byte Dezimalwert 255	
30	FF	Subnetmaske 2.Byte Dezimalwert 255	
31	FF	Subnetmaske 1.Byte Dezimalwert 255	
32	01	Gateway 4.Byte Dezimalwert 1	
33	00	Gateway 3.Byte Dezimalwert 0	
34	A8	Gateway 2.Byte Dezimalwert 168	
35	C0	Gateway 1.Byte Dezimalwert 192	
36	01	Primary DNS 4.Byte Dezimalwert 1	
37	00	Primary DNS 3.Byte Dezimalwert 0	
38	A8	Primary DNS 2.Byte Dezimalwert 168	
39	C0	Primary DNS 1.Byte Dezimalwert 192	
40	73	Secondary DNS 4.Byte Dezimalwert 115	
41	97	Secondary DNS 3.Byte Dezimalwert 151	
42	ED	Secondary DNS 2.Byte Dezimalwert 237	
43	D9	Secondary DNS 1.Byte Dezimalwert 217	
44	0w 00 (DHCP disable) 01 (DHCP enable)	DCHP-Client Konfiguration	
45	00	reserviert	
46	00	reserviert	
47	00	reserviert	

Lesen Netzwerkkonfigurationen

Dieser Befehl ermöglicht das Lesen aller Netzwerkkonfigurationen wie IP-Adresse, Subnetmaske, Hostname, Gateway, DNS-Adressen, die Einstellung der DHCP-Client-Funktion sowie der MAC-Adresse.

Beispiel: Lesen der Netzwerkkonfigurationen

Hostname = "EXDUL-518", IP = 192.168.0.63, Subnetzmaske = 255.255.255.0, Gateway = 192.168.0.1, Primary DNS = 192.168.0.1, Secondary DNS = 217.237.151.115

Byte	Senden	Beschreibung	Empfangen	Beschreibung
0	0C	Befehlscode 1. Byte	0C	Befehlscode 1. Byte
1	00	Befehlscode 2. Byte	00	Befehlscode 2. Byte
2	08	Befehlscode 3. Byte	08	Befehlscode 3. Byte
3	01	Längenbyte → 4 Byte	0C	Längenbyte → 48 Byte
4	00	reserviert	45	Hostname 1. Zeichen Easci
5	00	reserviert	58	Hostname 2. Zeichen Xasci
6	00	reserviert	44	Hostname 3. Zeichen Dasci
7	01	Lesefunktion	55	Hostname 4. Zeichen Uasci
8			4C	Hostname 5. Zeichen Lasci
9			2D	Hostname 6. Zeichen -asci
10			35	Hostname 7. Zeichen 5asci
11			31	Hostname 8. Zeichen 1asci
12			38	Hostname 9. Zeichen 8asci
13			20	Hostname 10. Zeichen [Leer]asci
14			20	Hostname 11. Zeichen [Leer]asci
15			20	Hostname 12. Zeichen [Leer]asci
16			20	Hostname 13. Zeichen [Leer]asci
17			20	Hostname 14. Zeichen [Leer]asci
18			20	Hostname 15. Zeichen [Leer]asci
19			20	Hostname 16. Zeichen [Leer]asci
20			3F	IP-Adresse 4. Byte Dezimalwert 63
21			0	IP-Adresse 3. Byte Dezimalwert 0
22			A8	IP-Adresse 2. Byte Dezimalwert 168
23			C0	IP-Adresse 1. Byte Dezimalwert 192
24			00	Subnetmaske 4.Byte Dezimalwert 0
25			FF	Subnetmaske 3.Byte Dezimalwert 255
26			FF	Subnetmaske 2.Byte Dezimalwert 255
27			FF	Subnetmaske 1.Byte Dezimalwert 255

EXDUL-518E / EXDUL-518S © 2021 by Messcomp Datentechnik GmbH

01	Gateway 4.Byte Dezimalwert 1
00	Gateway 3.Byte Dezimalwert 0
A8	Gateway 2.Byte Dezimalwert 168
C0	Gateway 1.Byte Dezimalwert 192
01	Primary DNS 4.Byte Dezimalwert 1
00	Primary DNS 3.Byte Dezimalwert 0
A8	Primary DNS 2.Byte Dezimalwert 168
C0	Primary DNS 1.Byte Dezimalwert 192
73	Secondary DNS 4.Byte Dezimalwert 115
97	Secondary DNS 3.Byte Dezimalwert 151
ED	Secondary DNS 2.Byte Dezimalwert 237
D9	Secondary DNS 1.Byte Dezimalwert 217
0w 00 (DHCP disable) 01 (DHCP enable)	DCHP-Client Konfiguration
00	reserviert
00	reserviert
00	reserviert
	reserviert
	reserviert
00	MAC-Adresse 6.Zeichen
00	MAC-Adresse 5.Zeichen
00	MAC-Adresse 4.Zeichen
3E	MAC-Adresse 3.Zeichen
B4	MAC-Adresse 2.Zeichen
	01 00 A8 CO 01 00 01 00 01 00 A8 CO A97 ED 97 OW 00 (DHCP disable) 01 (DHCP enable) 00 </td

Schreiben der Securitykonfiguration

Das EXDUL-Modul stellt für die sichere Kommunikation einen Passwortschutz zur Verfügung. Ist dieser aktiviert, so muss bei jedem Transfer zum Modul das richtige Passwort gesendet werden. Im Default-Zustand ist dieser deaktiviert

Securitykonfiguration	Security-Byte
Passwort deaktiviert	0
Passwort aktiviert	1

Beispiel: Schreiben der Securitykonfiguration

Byte	Senden	Empfangen	Beschreibung
0	0C	0C	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	0C	0C	Befehlscode 3. Byte
3	01	01	Längenbyte → 20 Byte
4	00 (Passwort deaktiviert) 01 (Passwort aktiviert)	Security-Byte	
5	00		reserviert
6	00	reserviert	
7	00		Schreibfunktion Securitykonfiguration

Lesen der Securitykonfiguration

Das EXDUL-Modul stellt für die sichere Kommunikation einen Passwortschutz zur Verfügung. Ist dieser aktiviert, so muss bei jedem Transfer zum Modul das richtige Passwort gesendet werden. Im Default-Zustand ist dieser deaktiviert.

Securitykonfiguration	Security-Byte
Passwort deaktiviert	0
Passwort aktiviert	1

Byte	Senden	Empfangen	Beschreibung	
0	0C	0C	Befehlscode 1. Byte	
1	00	00	Befehlscode 2. Byte	
2	0C	0C	Befehlscode 3. Byte	
3	01	01 Längenbyte → 20 Byte		
4	00	00 (Passwort deaktiviert) 01 (Passwort aktiviert)	rt) t) Security-Byte	
5	00	00	reserviert	
6	00	00	reserviert	
7	01	00	Lesefunktion Securitykonfiguration	

Beispiel: Lesen der Securitykonfiguration

Ändern des Passwortes

Das EXDUL-Modul stellt für die sichere Kommunikation einen Passwortschutz zur Verfügung. Ist dieser aktiviert, so muss bei jedem Transfer zum Modul das richtige Passwort gesendet werden. Im Default-Zustand lautet das Passwort "11111111" in ASCII und entspricht dem der Webpage. Mit dieser Funktion kann das Passwort abgeändert werden.

Byte	Senden	Empfangen	Beschreibung
0	0C	0C	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	0D	0D	Befehlscode 3. Byte
3	02	00	Längenbyte \rightarrow 20 Byte
4	45 _{hex}		Passwort 1. Zeichen Easci
5	58hex	Passwort 2. Zeichen Xasci	
6	44 _{hex}		Passwort 3. Zeichen Dasci
7	55 _{hex}		Passwort 4. Zeichen Uasci
8	4C _{hex}		Passwort 5. Zeichen Lasci
9	35hex	Passwort 6. Zeichen 5asci	
10	31 _{hex}	Passwort 7. Zeichen 1asci	
11	38hex		Passwort 8. Zeichen 8asci

Beispiel: Ändern des Passwortes in "EXDUL518"

Optokopplerausgänge lesen

Dieser Befehl ermöglicht das Einlesen des aktuellen Zustands der Optokopplerausgänge.

Optokoppler durchgeschaltet = 1, Optokoppler nicht durchgeschaltet = 0

Beispiel: Auslesen des Optokopplerausgangszustands Gesendet wird ein 8Byte langer Block und empfangen ein 8Byte langer Block mit dem Zustand des Optokopplerausgangs

Ausgangskanal	DOUT7	DOUT6	DOUT5	DOUT4	DOUT3	DOUT2	DOUT1	DOUT0
Schraubklemme	8	7	6	5	4	3	2	1
Schaltzustand	0	0	0	0	0	0	1	0

Byte	Senden	Beschreibung	Empfangen	Beschreibung
0	08	Befehlscode 1. Byte	08	Befehlscode 1. Byte
1	00	Befehlscode 2. Byte	00	Befehlscode 2. Byte
2	00	Befehlscode 3. Byte	00	Befehlscode 3. Byte
3	01 (→ 4Byte)	Längenbyte	01 (→ 4Byte)	Längenbyte
4	01	r/w Byte (1→ lesen)	01	Read-Funktion
5	00	reserviert	02	Zustand Optokopplerausgänge
6	00	reserviert	00	reserviert
7	00	reserviert	00	reserviert

Optokopplerausgänge schreiben

Dieser Befehl ermöglicht dem Anwender, die Ausgangsoptokoppler zu sperren oder durchzuschalten.

Optokoppler durchgeschaltet = 1, Optokoppler nicht durchgeschaltet = 0

Beispiel: Ausgabe des Zustands (0x02hex) an den Optokopplerausgängen (= DOUT0 gesperrt und DOUT1 durchgeschaltet)

Gesendet wird ein 8Byte langer Block und empfangen ein 4Byte Block als Bestätigung

Ausgangskanal	DOUT7	DOUT6	DOUT5	DOUT4	DOUT3	DOUT2	DOUT1	DOUT0
Schraubklemme	8	7	6	5	4	3	2	1
Schaltzustand	0	0	0	0	0	0	1	0

Byte	Senden	Empfangen Beschreibung	
0	08	08	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	00	00	Befehlscode 3. Byte
3	01 (→ 4Byte)	00	Längenbyte
4	00		r/w Byte (0→ schreiben)
5	02		Optokopplerzustand
6	00		reserviert
7	00		reserviert

Optokopplerausgänge einzeln schreiben

Dieser Befehl ermöglicht dem Anwender, einzelne Ausgangsoptokoppler zu sperren oder durchzuschalten.

Optokoppler durchgeschaltet = 1, Optokoppler nicht durchgeschaltet = 0

Beispiel: DOUT1 soll unabhängig der anderen Ausgänge geschaltet werden Gesendet wird ein 8Byte langer Block und empfangen ein 4Byte Block als Bestätigung

Ausgangskanal	DOUT7	DOUT6	DOUT5	DOUT4	DOUT3	DOUT2	DOUT1	DOUT0
Schraubklemme	8	7	6	5	4	3	2	1
Kanal-Index	7	6	5	4	3	2	1	0

Byte	Senden	Empfangen	Beschreibung
0	08	08	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	00	00	Befehlscode 3. Byte
3	01 (→ 4Byte)	00	Längenbyte
4	02		r/w (2→ einzeln schreiben)
5	01		Kanal-Index
6	01		Optokopplerzustand
7	00		reserviert

Optokopplereingänge lesen

Dieser Befehl ermöglicht das Einlesen der aktuellen Zustände an den Optokopplereingängen.

Beispiel: Einlesen der Zustände an den Optokopplereingängen

Gesendet wird ein 4Byte langer Block und empfangen ein 8Byte langer Block mit den Zuständen.

Voraussetzung für diese Beispiele ist das Anlegen der Eingangspegel (hier 0xB3) an den einzelenen Eingängen nach folgender Tabelle:

HΒ LB Ausgangskanal DIN10 DIN9 DIN8 DIN7 DIN6 DIN5 DIN4 DIN3 DIN2 DIN1 DIN0 Schraubklemme 21 20 19 18 17 16 15 14 13 12 11 Schaltzustand 0 0 1 1 0 1 1 0 0 1 1

Byte	Senden	Beschreibung	Empfangen	Beschreibung
0	08	Befehlscode 1. Byte	08	Befehlscode 1. Byte
1	00	Befehlscode 2. Byte	00	Befehlscode 2. Byte
2	01	Befehlscode 3. Byte	01	Befehlscode 3. Byte
3	00	Längenbyte	01 (→ 4Byte)	Längenbyte
4			B3	Zustand Optokopplereingänge LB (DIN7-DIN0)
5			01	Zustand Optokopplereingänge HB (DIN10-DIN8)
6			00	reserviert
7			00	reserviert

(0 = LOW = 0...3V, 1 = HIGH = 10..30V)

Zähler

Dieser Befehl ermöglicht den Zugriff auf die Zähler. So kann der Zähler gestartet, gestoppt, resetted und gelesen werden. Zudem besteht die Möglichkeit, das Overflow-Flag einzulesen und rückzusetzen.

Code	Zähler-Befehlscode
00	Zähler starten
01	Zähler stoppen
02	Zähler resetten
03	Zählerstand lesen
04	reserviert
05	Overflow-Flag lesen
06	Overflow-Flag rücksetzen

Beispiel für Zähler0:

Zähler0 Start / Stop / Reset

Byte	Senden	Beschreibung	Empfangen	Beschreibung
0	09	Befehlscode 1. Byte	09	Befehlscode 1. Byte
1	00	Befehlscode 2. Byte	00	Befehlscode 2. Byte
2	00	Befehlscode 3. Byte	00	Befehlscode 3. Byte
3	01	Längenbyte	01	Längenbyte
4	bb 00 01 02	Zähler Befehlscode Zähler0 starten Zähler0 stoppen Zähler0 resetten	bb	Zähler Befehlscode
5	00	reserviert	00	reserviert
6	00	reserviert	00	reserviert
7	00	reserviert	00	reserviert

Zähler0 lesen

Byte	Senden	Beschreibung	Empfangen	Beschreibung
0	09	Befehlscode 1. Byte	09	Befehlscode 1. Byte
1	00	Befehlscode 2. Byte	00	Befehlscode 2. Byte
2	00	Befehlscode 3. Byte	00	Befehlscode 3. Byte
3	01	Längenbyte	02 (→ 8Byte)	Längenbyte
4	03	Zähler Befehlscode	03	Zähler Befehlscode
5	00	reserviert	00	reserviert
6	00	reserviert	00	reserviert
7	00	reserviert	00	reserviert
8			ww	Zählerstand Byte0
9			ww	Zählerstand Byte1
10			ww	Zählerstand Byte2
11			ww	Zählerstand Byte3

Zählerstand = Zählerstand Byte3 * 0x1000000 + Zählerstand Byte2 * 0x10000 + Zählerstand Byte1 * 0x100 + Zählerstand Byte0

Byte	Senden	Beschreibung	Empfangen	Beschreibung
0	09	Befehlscode 1. Byte	09	Befehlscode 1. Byte
1	00	Befehlscode 2. Byte	00	Befehlscode 2. Byte
2	00	Befehlscode 3. Byte	00	Befehlscode 3. Byte
3	01	Längenbyte	02 (→ 8Byte)	Längenbyte
4	05	Zähler Befehlscode Overflow-Flag lesen	05	Zähler Befehlscode Overflow-Flag lesen
5	00	reserviert	00	reserviert
6	00	reserviert	00	reserviert
7	00	reserviert	Of	Overflow-Flag

Overflow-Flag Zähler0 lesen

Overflow-Flag Zähler0 rücksetzen

Byte	Senden	Beschreibung	Empfangen	Beschreibung
0	09	Befehlscode 1. Byte	09	Befehlscode 1. Byte
1	00	Befehlscode 2. Byte	00	Befehlscode 2. Byte
2	00	Befehlscode 3. Byte	00	Befehlscode 3. Byte
3	01	Längenbyte	01 (→ 4Byte)	Längenbyte
4	06	Zähler Befehlscode Overflow-Flag rücksetzen	06	Zähler Befehlscode Overflow-Flag rücksetzen
5	00	reserviert	00	reserviert
6	00	reserviert	00	reserviert
7	00	reserviert	00	reserviert

Watchdog-Timer

Dieser Befehl ermöglicht den Zugriff auf die Zähler. So kann der Zähler gestartet, gestoppt, resetted und gelesen werden. Zudem besteht die Möglichkeit, das Overflow-Flag einzulesen und rückzusetzen.

Code Zähler-Befehlscode	
00	Watchdog-Timer starten
01	Watchdog-Timer stoppen
02	Watchdog-Timer resetten
03	WDT Periiodendauer setzen

Watchdog-Timer Start / Stop / Reset

Byte	Senden	Beschreibung	Empfangen	Beschreibung
0	0C	Befehlscode 1. Byte	0C	Befehlscode 1. Byte
1	00	Befehlscode 2. Byte	01	Befehlscode 2. Byte
2	01	Befehlscode 3. Byte	01	Befehlscode 3. Byte
3	01	Längenbyte	01	Längenbyte
4	bb 00 01 02 03	WDT Befehlscode WDT starten WDT stoppen WDT resetten WDT Periodendauer setzen	bb	Zähler Befehlscode
5	00	reserviert	00	reserviert
6	00	reserviert	00	reserviert
7	00	reserviert	00	reserviert

Byte	Senden	Beschreibung	Empfangen	Beschreibung
0	0C	Befehlscode 1. Byte	0C	Befehlscode 1. Byte
1	00	Befehlscode 2. Byte	01	Befehlscode 2. Byte
2	01	Befehlscode 3. Byte	01	Befehlscode 3. Byte
3	02	Längenbyte	01	Längenbyte
4	03	WDT Periodendauer setzen	bb	WDT Befehlscode
5	00	reserviert	00	reserviert
6	00	reserviert	00	reserviert
7	00	reserviert	00	reserviert
8	pp₀	Periodendauer Byte0		
9	pp1	Periodendauer Byte1		
10	pp2	Periodendauer Byte2		
11	pp₃	Periodendauer Byte3		

Watchdog-Timer Periodendauer in ms einstellen

Periodendauer = Byte3 * 0x1000000 + Byte2 * 0x10000 + Byte1 * 0x100 + Byte0 [ms]

Initialisierung eines programmierbaren Logikzweiges

Dieser Befehl ermöglicht das Initialisieren eines der programmierbaren Logikzweige.

Code	Eingangsfunktion
00	NONE
01	TRUE (logische 1)
02	FALSE (logische 0)
03 15	reserviert
16	Zustand DIN0
17	Zustand DIN1
18	Zustand DIN2
19	Zustand DIN3
20	Zustand DIN4
21	Zustand DIN5
22	Zustand DIN6
23	Zustand DIN7
24	Zustand DIN8
25	Zustand DIN9
26	Zustand DIN10
27 31	reserviert
32	Steigende Flanke DIN0 (event)
33	Steigende Flanke DIN1 (event)
34	Steigende Flanke DIN2 (event)
35	Steigende Flanke DIN3 (event)
36	Steigende Flanke DIN4 (event)
37	Steigende Flanke DIN5 (event)
38	Steigende Flanke DIN6 (event)
39	Steigende Flanke DIN7 (event)
40	Steigende Flanke DIN8 (event)
41	Steigende Flanke DIN9 (event)
42	Steigende Flanke DIN10 (event)

Code	Gatterfunktion
00	UND-Verknüpfung
01	ODER-Verknüpfung

Code	Ausgangsfunktion
00	NONE (Zweig deaktiviert)
04	Send Message1 (event)
05	Send Message2 (event)
06	Send Message3 (event)
07	Send Message4 (event)
16	Write DOUT0
17	Write DOUT1
18	Write DOUT2
19	Write DOUT3
20	Write DOUT4
21	Write DOUT5
22	Write DOUT6
23	Write DOUT7
32	Set DOUT0 (event)
33	Set DOUT1 (event)
34	Set DOUT2 (event)
35	Set DOUT3 (event)
36	Set DOUT4 (event)
37	Set DOUT5 (event)
38	Set DOUT6 (event)
39	Set DOUT7 (event)
48	Clear DOUT0 (event)
49	Clear DOUT1 (event)
50	Clear DOUT2 (event)
51	Clear DOUT3 (event)
52	Clear DOUT4 (event)
53	Clear DOUT5 (event)
54	Clear DOUT6 (event)
55	Clear DOUT7 (event)
64	Toggle DOUT0 (event)
65	Toggle DOUT1 (event)
66	Toggle DOUT2 (event)
67	Toggle DOUT3 (event)
68	Toggle DOUT4 (event)
69	Toggle DOUT5 (event)
70	Toggle DOUT6 (event)
71	Toggle DOUT7 (event)

Beispiel: Initialisierung des ersten Logikzweiges

Dabei soll bei jeder steigenden Flanke am Optokopplereingang DIN0 (event) die Message1 an den PC geschickt werden. (IN0 = 32, IN1 = TRUE, IN2 = TRUE, IN3 = TRUE, Gate = 0, OUT = 4)

Byte	Senden	Beschreibung	Empfangen	Beschreibung
0	0C	Befehlscode 1. Byte	0C	Befehlscode 1. Byte
1	02	Befehlscode 2. Byte	02	Befehlscode 2. Byte
2	10	Befehlscode 3. Byte	10	Befehlscode 3. Byte
3	01	Längenbyte → 4 Byte	01	Längenbyte → 4 Byte
4	00	Lesen-/Schreibbyte	00	Lesen-/Schreibbyte
5	00	reserviert	00	reserviert
6	00	reserviert	00	reserviert
7	01	Zweigindex	00	reserviert
8	20	Funktion IN0		
9	00	reserviert		
10	00	reserviert		
11	00	reserviert		
12	01	Funktion IN1		
13	00	reserviert		
14	00	reserviert		
15	00	reserviert		
16	01	Funktion IN2		
17	00	reserviert		
18	00	reserviert		
19	00	reserviert		
20	01	Funktion IN3		
21	00	reserviert		
22	00	reserviert		
23	00	reserviert		
24	00	Gatterfunktion		
25	00	reserviert		
26	00	reserviert		
27	00	reserviert		
28	04	Ausgangsfunktion OUT0		
29	00	reserviert		
30	00	reserviert		
31	00	reserviert		

Error-Register auslesen

Dieser Befehl ermöglicht das Auslesen der beiden Error-Register.

Byte	Senden	Beschreibung	Empfangen	Beschreibung
0	FF	Befehlscode 1. Byte	FF	Befehlscode 1. Byte
1	00	Befehlscode 2. Byte	00	Befehlscode 2. Byte
2	00	Befehlscode 3. Byte	00	Befehlscode 3. Byte
3	01	Längenbyte	03	Längenbyte
4	00	Error-Register auslesen	00	Error-Register auslesen
5	00	reserviert	00	reserviert
6	00	reserviert	00	reserviert
7	00	reserviert	00	reserviert
8			aa0	Register0 Byte0
9			aa1	Register0 Byte1
10			aa2	Register0 Byte2
11			aa3	Register0 Byte3
12			bb0	Register1 Byte0
13			bb1	Register1 Byte1
14			bb2	Register1 Byte2
15			bb3	Register1 Byte3

Error-Register0 = aa3 * 0x100000 + aa2 * 0x10000 + aa1 * 0x100 + aa0 Error-Register1 = bb3 * 0x100000 + bb2 * 0x10000 + bb1 * 0x100 + bb0

Error-Register rücksetzen

Dieser Befehl ermöglicht das Rücksetzen der beiden Error-Register.

Byte	Senden	Beschreibung	Empfangen	Beschreibung
0	FF	Befehlscode 1. Byte	FF	Befehlscode 1. Byte
1	00	Befehlscode 2. Byte	00	Befehlscode 2. Byte
2	00	Befehlscode 3. Byte	00	Befehlscode 3. Byte
3	01	Längenbyte	01	Längenbyte
4	01	Error-Register rücksetzen	01	Error-Register rücksetzen
5	00	reserviert	00	reserviert
6	00	reserviert	00	reserviert
7	00	reserviert	00	reserviert

Receivermodus aktivieren

Mit diesem Befehl kann der Receivermodus für die programmierbare Logik aktiviert werden. Nachdem eine zweite TCP/IP-Verbindung mit dem Modul aufgebaut wurde wird für diese Verbindung der Receivermodus aktiviert. Dieser Befehl bekommt keine Rückantwort. Ist dieser Modus eingeschaltet, funktionieren nur noch die Receiverbefehle über dieser TCP/IP-Verbindung. Sämtliche anderen Befehle, wie z. B. Eingänge lesen, müssen über die erste Verbindung erfolgen.Um den Receivermodus zu deaktiveren, muss der Befehl "Receivermodus deaktivieren" auf der Receiver-Verbindung verwendet oder die Verbindung beendet werden.

Byte	Senden	Beschreibung
0	00	Befehlscode 1 Byte
1	03	Befehlscode 2. Byte
2	00	Befehlscode 3. Byte
3	01	Längenbyte → 4 Byte
4	00	Receivermodus aktivieren
5	00	reserviert
6	00	reserviert
7	00	reserviert

Receivermodus Zähler lesen (Receivermodusbefehl)

Mit diesem Befehl kann der aktuelle Stand des Receivermodus-Zählers gelesen werden. Er kann nur bei der Verbindung in Receivermodus benutzt werden. Mit ihm kann überprüft werden, ob auch alle Messages angekommen sind. Der Wert sollte um 1 größer als der Indexwert der letzten Message sein.

Zählerindex = dd * 0x1000000 + cc * 0x10000 + bb * 0x100 + aa

Byte	Senden	Beschreibung	Empfangen	Beschreibung
0	0C	Befehlscode 1. Byte	0C	Befehlscode 1. Byte
1	01	Befehlscode 2. Byte	01	Befehlscode 2. Byte
2	02	Befehlscode 3. Byte	02	Befehlscode 3. Byte
3	01	Längenbyte	02 (→ 8Byte)	Längenbyte
4	02	Receivermodus-Zähler lesen	02	Receivermodus-Zähler lesen
5	00	reserviert	00	reserviert
6	00	reserviert	00	reserviert
7	00	reserviert	00	reserviert
8			aa	Receivermodus-Index Byte0
9			bb	Receivermodus-Index Byte1
10			сс	Receivermodus-Index Byte2
11			dd	Receivermodus-Index Byte3

Receivermodus deaktivieren (Receivermodusbefehl)

Mit diesem Befehl kann der Receivermodus für die programmierbare Logik deaktiviert werden. Dieser Befehl bekommt keine Rückantwort und ist nur auf einer aktiven Receiver-Verbindung benutzbar.

Byte	Senden	Beschreibung
0	0C	Befehlscode 1. Byte
1	03	Befehlscode 2. Byte
2	00	Befehlscode 3. Byte
3	01	Längenbyte → 4 Byte
4	01	Receivermodus deaktivieren
5	00	reserviert
6	00	reserviert
7	00	reserviert

14.5 Receivermodus

Oft kommt es vor, dass in regelmäßigen Abständen eine Änderung z.B. an den Optokopplereingängen überprüft werden muss. Dies erfolgt normalerweise durch das Polling der entsprechenden Eingänge. Werden nun die Eingänge sehr oft abgefragt und sind auch noch mehrere Module gleichzeitig im Einsatz, so kann dies schnell zu einer erheblichen Auslastung des Netzwerkes führen. Um dies zu Verhindern steht eine programmierbare Logik zu Verfügung, welche z. B. bei einer Änderung eines Optokopplereingangs eine Nachricht an den PC schicken kann. Damit entfällt die Notwendigkeit eines regelmäßigen Polling des Optokopplereingangs.

Um diese Nachrichten der programmierbaren Logik empfangen zu können, muss eine extra TCP/IC-Verbindung (NetworkStream) mit dem Modul gestartet werden und diese mittels Befehl in den Receivermodus versetzt werden. Ist dies geschehen kann von dem Anwenderprogramm auf Nachrichten der programmierbaren Logik gewartet werden. Dies kann je nach Bedarf und Möglichkeit synchron bzw. asynchron geschehen oder in einem externen Task ausgelagert werden.

Die Nachricht muss nicht mit einem Acknowledge im Programm bestätigt werden.

Während mit dem Modul mehrere TCP/IP-Verbindungen möglich sind, kann immer nur eine Verbindung im Receivermodus sein. Wird der Receivermodus nicht mehr benötigt, so kann diese Verbindung entweder durch Befehl in eine normale TCP/IP-Verbindung zurückgesetzt werden als auch durch einfaches Schließen der Verbindung beendet werden.

Für eine genauere Veranschaulichung des Receivermodus verweisen wir auf unsere Programmierbeispiele (z.B. Windows-C#-Beispiele)

14.6 Modulzugriff über LabVIEW und EXDUL.dll

Dank der EXDUL.dll kann das Modul ohne großen Aufwand in ein LabVIEW-Projekt eingebunden werden. Neben LabVIEW und der EXDUL.dll-Datei wird zudem auf dem Rechner das .NET-Framework benötigt.

Genauere Informationen finden sie im EXDUL-LabVIEW-Tutorial.

15. FAQ - Problembehandlung

Nachfolgend finden Sie eine kurze Zusammenstellung der häufigsten bekannten Fehlerursachen, die während der Inbetriebnahme oder beim Zugriff auf das EXDUL-518 bzw. auf die EXDUL-Webpage auftreten können. Prüfen Sie bitte zunächst folgende Punkte, bevor Sie mit Ihrem Händler Kontakt aufnehmen.

Ist die Versorgungsspannung für das EXDUL-518 korrekt angeschlossen? Für den Betrieb ist eine Spannungsversorgung von +10V ... +24 V DC an Klemme 23 (Vcc) und Klemme 24 (GND) nötig. Überprüfen Sie die Schraubklemmverbindungen am Modul sowie das Netzteil und die Anschlüsse am Netzteil.

Leuchtet die Connect-LED an der RJ45-Buchse kontinuierlich grün?

Das EXDUL-518 bootet nach Anlegen der Betriebsspannung. Sobald eine stabile Ethernet-Verbindung besteht, leuchtet die Connect-LED an der 8P8C-Modularbuchse (RJ45-Buchse) des EXDUL-518 kontinuierlich grün. Sollte das nicht der Fall sein, überprüfen Sie die direkte Kabelverbindung zwischen EXDUL-518 und Computer (evtl. Crossover-Kabel notwendig), beim Netzwerkbetrieb prüfen Sie die Netzwerkleitungen zwischen EXDUL-518 und der Wand-Netzwerkbuchse, dem aktiven Ethernet-Switch oder Ethernet-Hub.

Besteht eine stabile Ethernet-Verbindung zwischen PC und Netzwerk? Prüfen Sie das Netzwerkkabel zwischen dem Computer und der Netzwerkbuchse (RJ45-Wandsteckdose), dem aktiven Ethernet-Switch oder Ethernet-Hub. Das Ethernetkabel muss für die Ethernet-Verbindung geeignet, nicht beschädigt und beidseitig korrekt eingesteckt sein. Bei den aktuellen PCs befinden sich an der Netzwerkbuchse des Netzwerkadapters meistens zwei LEDs . Bei bestehender Verbindung mit dem Netzwerk leuchtet die grüne LED kontinuierlich. Befindet sich an der Netzwerkbuchse des PCs nur eine LED, blinkt bzw. flackert diese bei funktionierender Netzwerkverbindung.

Ist die verwendete Netzwerkleitung für den Anschluss geeignet?

Beim Anschluss des EXDUL-518 an einen Switch, Hub oder PC mit Ethernet-Schnittstelle, die Auto-MDI(X) beherrscht, kann ein Standard Netzwerkkabel (Cat. 5 oder höher) verwendet werden. Für ältere Rechner, deren Ethernet-Schnittstelle die Sende- und Empfangsleitungen nicht automatisch kreuzen, ist ein gekreuztes Netzwerkkabel (Crossoverkabel) oder ein Crossover-Adapter notwendig.

Ist die Wandnetzwerkbuchse aktiv?

Falls Sie das EXDUL-518 über eine Wandsteckdose in ein fest installiertes Netzwerk integrieren, prüfen Sie zusammen mit Ihrem Netzwerkadministrator, ob die Wandnetzwerkdose aktiv und mit einem aktiven Ethernet-Switch oder Ethernet-Hub verbunden ist.

Ist die Ethernet-Schnittstelle des Computers aktiviert?

Im BIOS des PCs muss der Ethernetadapter aktiviert sein. Kontrollieren Sie im Windows Geräte Manager, ob dieser unter Netzwerkadapter gelistet ist. Der Eintrag darf nicht mit einem Ausrufezeichen versehen sein!

Sind die Netzwerkeinstellungen des Computers korrekt?

Jedes aktive Gerät in einem TCP/IP-basierten Netzwerk benötigt eine eindeutige IP-Adresse, die in die Netzwerk-ID und Geräte-ID gegliedert ist. Die Subnetzmaske trennt die IP-Adresse in den Netzwerkteil (Netzpräfix, Netzwerk-ID) und den Geräteteil (Geräte-ID). In der Grundeinstellung ist das EXDUL-518 auf DHCP-Client eingestellt. EXDUL-518E / EXDUL-518S@ 2021 by Messcomp Datentechnik GmbH DV01

Wie kann die Netzwerkeinstellung des PCs überprüft werden?

Die TCP/IP-Einstellungen Ihres Rechners können Sie über das Fenster Eigenschaften von Internetprotokoll Version 4 (TCP/IPv4) bzw. Status von LAN-Verbindung (siehe "Wie kann die IP-Adresse des PCs überprüft und geändert werden?") oder über den einfachen Kommandozeilenbefehl IPCONFIG anzeigen. Wechseln Sie dazu in die MS-DOS-Eingabeaufforderung (siehe "Wie wechsle ich in die MS-DOS-Eingabeaufforderung?"), geben **ipconfig** ein und bestätigen Sie mit der **Eingabetaste** (Enter). Die Rückmeldung sollte ähnlich der folgenden Abbildung aussehen:

Eingabeaufforderung	-		×
Microsoft Windows [Version 10.0.17763.316] (c) 2018 Microsoft Corporation. Alle Rechte vorbehalten.			^
C:\Users\Entwicklung 08>ipconfig			
Windows-IP-Konfiguration			
Ethernet-Adapter LAN-Verbindung:			
Verbindungsspezifisches DNS-Suffix: IPv6-Adresse. : 2003:cd:d3cd:5d00:fd52: : reaporine: 1Pv6-Adresse. : reaporine: 2003:cd:d3cd:5d00:ed48: Verbindungslokale: IPv6-Adresse. : fe88::rd52:c675:e499:d8 IPv6-Adresse. : fe88::rd52:c675:e499:d8 ISVe-Adresse. : Subnetzmaske : : : : : : : : : : : : : : : : : : :	c675:e c1ee:e 7e%7 2e%7	2499:d87e 21db:bb8c	
C:/USers/Entwicklung US>			
			~

Wie kann die IP-Adresse des PCs überprüft und geändert werden? Windows10:

Start -> Einstellungen -> Netzwerk und Internet -> Status -> Adapteroptionen ändern -> im Fenster Netzwerkverbindungen die gewünschte LAN-Verbindung auswählen (Doppelklick oder rechte Maustaste) -> Eigenschaften -> Internetprotokoll Version 4 (TCP(IPV4) -> Eigenschaften

Hinweis: Zum Ändern der TCP/IP-Einstellungen sind Administratorrechte notwendig!

status mio co	nfig Peripherie	
P/IP Konfi	guration	
Seite dient zur Einstellu	ing und Anderung der Netzwerkparameter.	
orrekte Einstellungen g	nngend die Hinweise im Handbuch, durch jeht die Netzwerkkonnektivität verloren.	
MAC Address:	d4:b4:3e:00:00:00	
Host Name:	EX00.518	
	Z Enable DHCP	
IP Address:	192.168.180.4	
Gateway:	192.168.180.1	
Subnet Mask:	255-255-255-0	
Primary DNS:	192.168.100.1	
Secondary DNS:	0.0.0.0	
	Daten speichern	

Wie wechsle ich in die MS-DOS-Eingabeaufforderung? Windows10:

Start (Rechtsklick) -> Suchen -> cmd eingeben -> Bestätigung über die Eingabetaste (Enter)

oder

Start -> Windows-System -> Eingabeaufforderung

Ist es möglich EXDUL-5xx-Module in einem bestehenden Netzwerk zu orten und die Netzwerkdaten festzustellen?

Alle EXDUL-5xx-Module versenden in gewissen zeitlichen Abständen Erkennungssignale. Das Programm **ExdulUtility**_v2_xx (oder höher) wertet die Kennungsdaten aus und erstellt eine Liste mit Host-Namen, IP-Adresse und MAC-Adresse. Es eignet sich für ein einzelnes direkt am PC angeschlossenes EXDUL-5xx, wie für ein Netzwerk über Hub oder Switch mit mehreren Modulen. Für das Programm ist eine Freigabe in Ihrer Firewall erforderlich, falls diese die Kommunikation des Suchprogrammes mit den EXDUL-5xx verhindert.

16. Technische Daten

Digitale Eingänge über Optokoppler

11 bipolare Kanäle mit galvanischer Trennung Überspannungsschutz-Dioden Eingangsspannungsbereich high = 10..30 Volt low = 0..3 Volt

Digitale Ausgänge über FET-Leitungsschalter

8 Kanäle mit galvanischer Trennung über Optokoppler Kontakt A des FET (Source, + Anschluss) mit jeweils einer Anschlussklemme, Kontakt B (Drain, - Anschluss) mit gemeinsamer Anschlussklemme aller 8 Kanäle Verpolungsschutz-Dioden Zuschaltbare Freilaufdioden für alle Kanäle Spannung-CE: max. 30 V Ausgangsstrom: max. 1A/Kanal Schaltzeit: typ. 60µs (24V, 100mA) Abfallzeit: typ. 250µs (24V, 100mA)

Zähler

6 programmierbare Zähler 32 Bit (belegen 6 Optokoppler-Eingänge) Zählfrequenz: max. 5 kHz Automatische Sicherung der Zählerstände im 10kHz Takt

Programmierbare Logik

Ausgänge über Verknüpfungen schalten Meldung an PC bei Zustandsänderung an den Eingängen senden

TCP/IP-Server

Ausgänge über Verknüpfungen schalten Meldung an PC bei Zustandsänderung an den Eingängen senden

Webserver

Konfiguration Funktionstest Update der Firmware

LCD Anzeige (nur EXDUL-518E)

Matrixanzeige mit 2 Zeilen und 16 Spalten zur Darstellung von 16 Zeichen je Zeile Programmierbar zur Darstellung anwendungsspezifischer Daten oder als I/O-Zustandsanzeige

Modul-Anschlüsse

1 * 24polige Schraubklemmleiste Ethernet RJ45-Buchse

Stromversorgung

extern Spannung: 10 .. 30V Strom: typ. 100mA bei 24V

Ethernet-Anschlussleitung

RJ45 Netzwerkkabel Cat5 oder höher

Abmessungen

105 mm x 89 mm x 59 mm (l x b x h)

Gehäuse

Isolierstoffgehäuse mit integrierter Schnapptechnik zur DIN EN-Hutschienenmontage Geeignet für Aufbaumontagen, Schaltschrank- und Verteilereinbau sowie für mobile Tischeinsätze

17. Beschaltungsbeispiele

17.1 Beschaltung der Optokoppler-Eingänge

Grafik 17.1.1 Beschaltung der Optokopplereingänge

Grafik 17.1.2 Beschaltung der Optokopplereingänge revers

17.2 Beschaltung der Optokoppler-Ausgänge

Grafik 17.2 Beschaltung der Optokoppler-Ausgänge

18. ASCII-Tabelle

Hex	Dez	Binär	Zeichen]	Hex	Dez	Binär	Zeichen
00	0	00000000			28	40	00101000	(
01	1	0000001			29	41	00101001)
02	2	00000010			2A	42	00101010	*
03	3	00000011			2B	43	00101011	+
04	4	00000100			2C	44	00101100	,
05	5	00000101			2D	45	00101101	-
06	6	00000110			2E	46	00101110	
07	7	00000111			2F	47	00101111	/
08	8	00001000			30	48	00110000	0
09	9	00001001			31	49	00110001	1
0A	10	00001010			32	50	00110010	2
0B	11	00001011			33	51	00110011	3
0C	12	00001100			34	52	00110100	4
0D	13	00001101			35	53	00110101	5
0E	14	00001110			36	54	00110110	6
0F	15	00001111			37	55	00110111	7
10	16	00010000			38	56	00111000	8
11	17	00010001			39	57	00111001	9
12	18	00010010			3A	58	00111010	:
13	19	00010011			3B	59	00111011	;
14	20	00010100			3C	60	00111100	<
15	21	00010101			3D	61	00111101	=
16	22	00010110			3E	62	00111110	>
17	23	00010111			3F	63	00111111	?
18	24	00011000			40	64	01000000	@
19	25	00011001			41	65	01000001	А
1A	26	00011010			42	66	01000010	В
1B	27	00011011			43	67	01000011	С
1C	28	00011100			44	68	01000100	D
1D	29	00011101			45	69	01000101	E
1E	30	00011110			46	70	01000110	F
1F	31	00011111			47	71	01000111	G
20	32	00100000	[Leer]		48	72	01001000	Н
21	33	00100001	!		49	73	01001001	I
22	34	00100010	33		4A	74	01001010	J
23	35	00100011	#		4B	75	01001011	К
24	36	00100100	\$		4C	76	01001100	L
25	37	00100101	%		4D	77	01001101	Μ
26	38	00100110	&		4E	78	01001110	Ν
27	39	00100111	,		4F	79	01001111	0

EXDUL-518E / EXDUL-518S © 2021 by Messcomp Datentechnik GmbH

Hex	Dez	Binär	Zeichen]	Hex	Dez	Binär	Zeichen
50	80	01010000	Р	1	7C	124	01111100	
51	81	01010001	Q		7D	125	01111101	}
52	82	01010010	R		7E	126	01111110	-
53	83	01010011	S		7F	127	01111111	
54	84	01010100	Т		80	128	10000000	
55	85	01010101	U		81	129	10000001	
56	86	01010110	V		82	130	10000010	
57	87	01010111	W		83	131	10000011	
58	88	01011000	Х		84	132	10000100	
59	89	01011001	Y		85	133	10000101	
5A	90	01011010	Z		86	134	10000110	
5B	91	01011011	[87	135	10000111	
5C	92	01011100	-		88	136	10001000	
5D	93	01011101	1		89	137	10001001	
5E	94	01011110	^		8A	138	10001010	
5F	95	01011111	_		8B	139	10001011	
60	96	01100000	`		8C	140	10001100	
61	97	01100001	а		8D	141	10001101	
62	98	01100010	b		8E	142	10001110	
63	99	01100011	с		8F	143	10001111	
64	100	01100100	d		90	144	10010000	
65	101	01100101	е		91	145	10010001	
66	102	01100110	f		92	146	10010010	
67	103	01100111	a		93	147	10010011	
68	104	01101000	h		94	148	10010100	
69	105	01101001	i		95	149	10010101	
6A	106	01101010	i		96	150	10010110	
6B	107	01101011	, k		97	151	10010111	
6C	108	01101100	I		98	152	10011000	
6D	109	01101101	m		99	153	10011001	
6E	110	01101110	n		9A	154	10011010	
6F	111	01101111	0		9B	155	10011011	
70	112	01110000	a		9C	156	10011100	
71	113	01110001	q		9D	157	10011101	
72	114	01110010	r		9E	158	10011110	
73	115	01110011	s		9F	159	10011111	
74	116	01110100	t		A0	160	10100000	
75	117	01110101	u		A1	161	10100001	
76	118	01110110	v		A2	162	10100010	
77	119	01110111	w		A3	163	10100011	
78	120	01111000	x		A4	164	10100100	
79	121	01111001	v		A5	165	10100101	
7A	122	01111010	z		A6	166	10100110	
7B	123	01111011	{		A7	167	10100111	

EXDUL-518E / EXDUL-518S © 2021 by Messcomp Datentechnik GmbH

Hex	Dez	Binär	Zeichen	Hex	Dez	Binär	Zeichen
A8	168	10101000		D4	212	11010100	
A9	169	10101001		D5	213	11010101	
AA	170	10101010		D6	214	11010110	
AB	171	10101011		D7	215	11010111	
AC	172	10101100		D8	216	11011000	
AD	173	10101101		D9	217	11011001	
AE	174	10101110		DA	218	11011010	
AF	175	10101111		DB	219	11011011	
B0	176	10110000		DC	220	11011100	
B1	177	10110001		DD	221	11011101	
B2	178	10110010		DE	222	11011110	
B3	179	10110011		DF	223	11011111	
B4	180	10110100		E0	224	11100000	
B5	181	10110101		E1	225	11100001	
B6	182	10110110		E2	226	11100010	
B7	183	10110111		E3	227	11100011	
B8	184	10111000		E4	228	11100100	
B9	185	10111001		E5	229	11100101	
BA	186	10111010		E6	230	11100110	
BB	187	10111011		E7	231	11100111	
BC	188	10111100		E8	232	11101000	
BD	189	10111101		E9	233	11101001	
BE	190	10111110		EA	234	11101010	
BF	191	10111111		EB	235	11101011	
C0	192	11000000		EC	236	11101100	
C1	193	11000001		ED	237	11101101	
C2	194	11000010		EE	238	11101110	
C3	195	11000011		EF	239	11101111	
C4	196	11000100		F0	240	11110000	
C5	197	11000101		F1	241	11110001	
C6	198	11000110		F2	242	11110010	
C7	199	11000111		F3	243	11110011	
C8	200	11001000		F4	244	11110100	
C9	201	11001001		F5	245	11110101	
CA	202	11001010		F6	246	11110110	
СВ	203	11001011		F7	247	11110111	
CC	204	11001100		F8	248	11111000	
CD	205	11001101		F9	249	11111001	
CE	206	11001110		FA	250	11111010	
CF	207	11001111		FB	251	11111011	
D0	208	11010000		FC	252	11111100	
D1	209	11010001		FD	253	11111101	
D2	210	11010010		FE	254	11111110	
D3	211	11010011		FF	255	11111111	

EXDUL-518E / EXDUL-518S © 2021 by Messcomp Datentechnik GmbH

19. Produkthaftungsgesetz

Hinweise zur Produkthaftung

Das Produkthaftungsgesetz (ProdHaftG) regelt die Haftung des Herstellers für Schäden, die durch Fehler eines Produktes verursacht werden.

Die Verpflichtung zu Schadenersatz kann schon gegeben sein, wenn ein Produkt aufgrund der Form der Darbietung bei einem nichtgewerblichen Endverbraucher eine tatsächlich nicht vorhandene Vorstellung über die Sicherheit des Produktes erweckt, aber auch wenn damit zu rechnen ist, dass der Endverbraucher nicht die erforderlichen Vorschriften über die Sicherheit beachtet, die beim Umgang mit diesem Produkt einzuhalten wären.

Es muss daher stets nachweisbar sein, dass der nichtgewerbliche Endverbraucher mit den Sicherheitsregeln vertraut gemacht wurde.

Bitte weisen Sie daher im Interesse der Sicherheit Ihre nichtgewerblichen Abnehmer stets auf Folgendes hin:

Sicherheitsvorschriften

Beim Umgang mit Produkten, die mit elektrischer Spannung in Berührung kommen, müssen die gültigen VDE-Vorschriften beachtet werden.

Besonders sei auf folgende Vorschriften hingewiesen: VDE0100; VDE0550/0551; VDE0700; VDE0711; VDE0860. Sie erhalten VDE-Vorschriften beim vde-Verlag GmbH, Bismarckstraße 33, 10625 Berlin.

* Vor Öffnen eines Gerätes den Netzstecker ziehen oder sicherstellen, dass das Gerät stromlos ist.

* Bauteile, Baugruppen oder Geräte dürfen nur in Betrieb genommen werden, wenn sie vorher in ein berührungssicheres Gehäuse eingebaut wurden. Während des Einbaus müssen sie stromlos sein.

* Werkzeuge dürfen an Geräten, Bauteilen oder Baugruppen nur benutzt werden, wenn sichergestellt ist, dass die Geräte von der Versorgungsspannung getrennt sind und elektrische Ladungen, die in im Gerät befindlichen Bauteilen gespeichert sind, vorher entladen wurden.

* Spannungsführende Kabel oder Leitungen, mit denen das Gerät, das Bauteil oder die Baugruppe verbunden sind, müssen stets auf Isolationsfehler oder Bruchstellen untersucht werden. Bei Feststellen eines Fehlers in der Zuleitung muss das Gerät unverzüglich aus dem Betrieb genommen werden, bis die defekte Leitung ausgewechselt worden ist.

* Bei Einsatz von Bauelementen oder Baugruppen muss stets auf die strikte Einhaltung der in der zugehörigen Beschreibung genannten Kenndaten für elektrische Größen hingewiesen werden.

* Wenn aus den vorgelegten Beschreibungen für den nichtgewerblichen Endverbraucher nicht eindeutig hervorgeht, welche elektrischen Kennwerte für ein Bauteil gelten, so muss stets ein Fachmann um Auskunft ersucht werden.

Im Übrigen unterliegt die Einhaltung von Bau- und Sicherheitsvorschriften aller Art (VDE, TÜV, Berufsgenossenschaften usw.) dem Anwender/Käufer.

20. EG-Konformitätserklärung

Für die Erzeugnisse

EXDUL-518E EDV-Nummer A-374540 EXDUL-518S EDV-Nummer A-374520

wird hiermit bestätigt, dass sie den Anforderungen der betreffenden EG-Richtlinien entsprechen. Bei Nichteinhaltung der im Handbuch angegebenen Vorschriften zum bestimmungsgemäßen Betrieb der Produkte verliert diese Erklärung Ihre Gültigkeit.

EN 5502 Klasse B IEC 801-2 IEC 801-3 IEC 801-4 EN 50082-1 EN 60555-2 EN 60555-3

Diese Erklärung wird verantwortlich für den Hersteller

Messcomp Datentechnik GmbH Neudecker Str. 11 83512 Wasserburg

abgegeben durch

Dipl.Ing.(FH) Hans Schnellhammer

H. SIM

Wasserburg, 31.01.2019

Referenzsystem-Bestimmungsgemäßer Betrieb

Die Multifunktionsmodule EXDUL-518E und EXDUL-518S sind nicht selbständig betreibbare Geräte, dessen CE-Konformität nur bei gleichzeitiger Verwendung von zusätzlichen Computerkomponenten beurteilt werden kann. Die Angaben zur CE-Konformität beziehen sich deshalb ausschließlich auf den bestimmungsgemäßen Einsatz der Multifunktionsmodule in folgendem Referenzsystem:

Schaltschrank:	Vero IMRAK 3400	804-530061C 802-563424J 802-561589J
19" Gehäuse:	Vero PC-Gehäuse	145-010108L
19" Gehäuse:	Zusatzelektronik	519-112111C
Motherboard:	GA-586HX	PIV 1.55
Floppy-Controller:	auf Motherboard	
Floppy:	TEAC	FD-235HF
Grafikkarte:	Advantech	PCA-6443
Schnittstellen:	EXDUL-518E EXDUL-518S	A-374540 A-374520