EDV-Nr.: A-381715

EXDUL-371S

EDV-Nr.: 381710

8 A/D-Eingänge 12 Bit (single ended) oder 4 A/D-Eingänge 12 Bit (differentiell) 2 D/A-Ausgänge 12 Bit 3 Eingänge über Optokoppler 2 Ausgänge über Optokoppler Zähler 16 Bit LCD-Anzeige (nur EXDUL-371E)

Copyright[®] 2013 by Messcomp Datentechnik GmbH

Diese Dokumentation ist urheberrechtlich geschützt. Alle Rechte sind vorbehalten.

Messcomp Datentechnik GmbH behält sich das Recht vor, die in dieser Dokumentation beschriebenen Produkte jederzeit und ohne Vorankündigung zu verändern.

Ohne schriftliche Genehmigung der Firma Messcomp Datentechnik GmbH darf diese Dokumentation in keinerlei Form vervielfältigt werden.

Geschützte Warenzeichen

Windows[®], Visual Basic[®], Visual C++[®], Visual C#[®] sind eingetragene Warenzeichen von Microsoft.

wasco® ist ein eingetragenes Warenzeichen.

EXDUL® ist ein eingetragenes Warenzeichen.

Haftungsbeschränkung

Die Firma Messcomp Datentechnik GmbH haftet für keinerlei durch den Gebrauch des Multifunktionsmoduls EXDUL-371 und dieser Dokumentation direkt oder indirekt entstandenen Schäden.

Wichtiger Hinweis:

Dieses Handbuch wurde für die Module EXDUL-371E und EXDUL-371S erstellt. Das EXDUL-371E bietet zusätzlich eine LCD-Anzeige, alle weiteren Funktionen der Module sind identisch. Für das EXDUL-371S sind die Befehle und Funktionen, die das Display betreffen, nicht zutreffend.

Inhaltsverzeichnis

1. Produktbeschreibung

2. Anschlussklemmen

2.1 Klemmenbelegung

3. Systemkomponenten

- 3.1 Blockschaltbild EXDUL-371E
- 3.2 Blockschaltbild EXDUL-371S
- 3.3 A/D-Eingänge
- 3.4 D/A-Ausgänge
- 3.5 Optokoppler-Eingänge
- 3.6 Optokoppler-Ausgänge
- 3.7 Zähler
- 3.8 LCD-Anzeige (nur EXDUL-371E)

4. Inbetriebnahme

- 4.1 Anschluss an einen USB-Port
- 4.2 Spannungsversorgung über den USB-Port
- 4.3 Spannungsversorgung über eine externe Spannungsquelle
- 4.4 LCD-Anzeige während der Inbetriebnahme (nur EXDUL-371E)
- 4.5 LCD-Anzeige während des Betriebs (nur EXDUL-371E)

5. 8 A/D Eingänge 12 Bit

- 5.1 Single ended Betrieb
- 5.2 Differentieller Betrieb
- 5.3 Kombination von Single Ended und Differenz Messung
- 5.4 Eingangsspannungsbereiche
- 5.5 Abgleich der A/D-Eingänge

6. 2 D/A Ausgänge 12 Bit

- 6.1 Ausgangsspannungsbereich
- 6.2 Abgleich der D/A-Ausgänge

7. Installation der Windows®-Treiber

8. Programmierung

- 8.1 Einführung
- 8.2 Kommunikation mit dem EXDUL-371
- 8.3 Windows®-Funktionen für die Programmierung
- 8.4 Register HW-Kennung und Seriennummer
- 8.5 Speicherbereiche UserA, UserB, UserLCD1m* und UserLCD2m
- 8.6 Display-Register UserLCD-Zeile1*, UserLCD-Zeile2* und LCD-Kontrast
- 8.7 Befehls- und Datenformat
- 8.8 Befehlsübersicht
- 8.9 Befehlszusammensetzung

9. Technische Daten

10. Beschaltungsbeispiele

- 10.1 Beschaltung der Eingänge
- 10.2 Beschaltung der Ausgänge
- 10.3 Beschaltung der D/A-Ausgänge
- 10.4 Beschaltung der A/D-Eingänge single ended
- 10.5 Beschaltung der A/D-Eingänge differentiell

11. ASCII-Tabelle

12. Produkthaftungsgesetz

13. EG-Konformitätserklärung

1. Produktbeschreibung

Das EXDUL-371E verfügt über acht massebezogene oder vier differentielle 12 Bit A/D-Eingangskanäle mit einstellbaren unipolaren (0-5 V, 0-10 V) sowie bipolaren (+/-2.5 V, +/-5 V, +/-10 V) Eingangsspannungsbereichen. Die Wandlungsauslösung incl. der damit verbundenen Konfiguration der A/D-Komponenten (Bereich-/Kanalauswahl) erfolgt per Software-Befehl. Die Ausgangsspannungsbereiche der zwei 12 Bit D/A-Ausgänge sind ebenfalls softwaremäßig zwischen unipolar (0-5 V, 0-10 V) oder bipolar (+/-5 V, +/-10 V) wählbar. Zusätzlich verfügt das Modul über drei digitale Eingänge und zwei digitale Ausgänge mit galvanischer Trennung über hochwertige Optokoppler und zusätzlichen Schutzdioden. Einer der digitalen Eingänge kann als 16 Bit Zähler verwendet werden. Alle Eingangsoptokoppler sind mit integrierter Schmitt-Trigger-Funktion ausgestattet. Spezielle leistungsfähige Ausgangsoptokoppler bewältigen einen Schaltstrom von bis zu 150 mA. Die programmierbare LCD-Anzeige ermöglicht die Darstellung von digitalen I/O-Statusinformation oder programmierbaren anwenderspezifischen Daten.

Über eine externe Spannungsquelle wird das Modul mit der notwendigen Betriebsspannung versorgt. Die Anschlüsse für die externe Spannungsversorgung sind wie die Anschlüsse der Eingangs- und Ausgangsoptokoppler einer 24poligen Schraubklemmleiste zugeführt. Das kompakte Gehäuse erlaubt den Einsatz als mobiles Modul am Notebook oder als Steuermodul mit einer Montage auf DIN EN-Tragschienen im Steuerungs- und Maschinenbau.

2. Anschlussklemmen

2.1 Klemmenbelegung von CN1

Vcc_EXT: Anschlussklemme für externe Versorgungsspannung GND_EXT: Masse-Anschluss bei Verwendung einer externen Versorgungsspannung NC: Klemme nicht belegt

3. Systemkomponenten

3.1 Blockschaltbild EXDUL-371E

Grafik 3.1 Blockschaltbild EXDUL-371E

3.2 Blockschaltbild EXDUL-371S

Grafik 3.2 Blockschaltbild EXDUL-371S

3.3 A/D-Eingänge

8 Eingänge single-ended (se) oder 4 Eingänge differentiell (diff) oder kombiniert se/diff per SW wählbar Auflösung: 12 Bit Eingangsspannungsbreich unipolar: 0..5 Volt, 0..10 Volt bipolar: +/-5 Volt, +/-10 Volt Absolute Accuracy: typ 0.1 % +/- 1 LSB Eingangswiderstand: unipolar 42 kΩ bipolar 31 kΩ Überspannungsschutz: 20V Messzyklus: max. 1 ms

3.4 D/A-Ausgänge

2 Ausgänge Auflösung: 12 Bit AA: typ 0.1 % +/- 1 LSB Ausgangsspannungsbereich unipolar: 0..5 Volt, 0..10 Volt bipolar: +/-2.5 Volt, +/-5 Volt, +/-10 Volt Ausgangsstrom: max +/-5 mA

3.5 Optokoppler-Eingänge

3 Kanäle, einzeln galvanisch getrennt Ein Kanal programmierbar als Zählereingang Optokoppler mit integrierter Schmitt-Trigger-Funktion Überspannungsschutz-Dioden Eingangsspannungsbereich high = 10..30 Volt low = 0..3 Volt Eingangsfrequenz: max. 10 kHz

3.6 Digitale Ausgänge über Optokoppler

2 Kanäle, einzeln galvanisch getrennt Leistungsoptokoppler Verpolungsschutz-Dioden Ausgangsstrom: max. 150 mA Spannung-CE: max. 50 V

3.7 Zähler

1 programmierbarer Zähler 16 Bit (belegt den ersten Optokoppler-Eingang) Zählfrequenz: max. 5 kHz

3.8 LCD Anzeige

Matrixanzeige mit 2 Zeilen und 16 Spalten zur Darstellung von 16 Zeichen je Zeile

Programmierbar zur Darstellung anwendungsspezifischer Daten oder als I/O-Zustandsanzeige

4. Inbetriebnahme

Der PC-Anschluss erfolgt einfach und unkompliziert Plug & Play über eine USB-Schnittstelle. Über eine externe Spannungsquelle wird das Modul mit der notwendigen Betriebsspannung versorgt.

4.1 Anschluss an einen USB-Port

Das EXDUL-371E / EXDUL-371S verfügt über ein USB 2.0 Interface und wird über die beiliegende USB-Anschlussleitung direkt an einen PC oder an einen USB-Hub angeschlossen. Der Anschluss erfolgt hotpluggable, d.h. das Modul ist auch im laufenden Betrieb anschließbar.

4.2 Spannungsversorgung über den USB-Port

Erfolgt die Spannungsversorgung nur über USB, d.h. es ist keine externe Spannungsquelle angeschlossen, so werden nur bestimmte Grundfunktionen unterstützt. Während die Kommunikation über USB und das Schreiben bzw. Lesen der Optokoppler-Ausgänge und Eingänge möglich ist, stehen alle analogen Komponenten und die LCD-Anzeige nicht zur Verfügung. Erst mit der Versorgung mittels externer Spannungsquelle kann der vollständige Funktionsumfang des EXDUL-371E /EXDUL-371S verwendet werden.

4.3 Spannungsversorgung über externe Spannungsquelle

Die Firmware des EXDUL-371E / EXDUL-371S erkennt selbständig die Spannungsversorgung über eine externe Spannungsquelle. Wird an den Klemmen Vcc_EXT und GND_EXT (siehe Klemmenbelegung) eine Spannung von +18 V...+36 V DC angelegt, schaltet das Modul sofort auf Betriebsspannung "extern" um. Die Spannungsversorgung über den USB-Port wird automatisch unterbrochen.

4.4 LCD-Anzeige während der Inbetriebnahme (nur EXDUL-371E)

Während der Inbetriebnahme bzw. Start des Moduls erscheint im Display eine Infoanzeige in Form des Modulnamens. Nach fünf Sekunden wird der Modulname je nach LCD-Anzeigen-Konfiguration entweder durch die digitale I/O-Statusanzeige oder UserLCD-Anzeige ersetzt.

4.5 LCD-Anzeige während des Betriebs (nur EXDUL-371E)

Bei der Inbetriebnahme des Moduls schaltet das Display nach ca. fünf Sekunden, je nach Einstellung, von der Infoanzeige in die digitale I/O-Statusanzeige oder die UserLCD-Anzeige. Während der I/O-Anzeige werden in Zeile1 die aktuellen Zustände der Eingänge, in Zeile2 die Zustände der Ausgänge angezeigt. Falls beim letzten Betrieb des Moduls mit vorgesehenem Befehl der UserLCD-Modus aktiviert wurde, erscheint anstelle der I/O-Statusanzeige die UserLCD-Anzeige mit den Werten aus den Speicherbereichen UserLCD1m und UserLCD2m. Die Daten aus den beiden Registern werden solange angezeigt, bis neue Benutzerdaten über UserLCD-Zeile1 und UserLCD-Zeile2 auf die Anzeige geschrieben werden. Um einen "Screen-Burn" zu vermeiden, wechselt die Anzeige im laufenden Betrieb etwa jede Minute für ca. fünf Sekunden von der I/O-Statusanzeige oder UserLCD-Anzeige in die Infoanzeige.

5. 8 A/D-Eingänge 12 Bit

Das EXDUL-371 verfügt über 8 single ended oder 4 gemultiplexte 12 Bit-A/D-Eingangskanäle mit programmierbarem Eingangsspannungsbereich. Die Konfiguration für die Wandlung (Kanal, Bereich) wird in Form von zwei Bytes mit der Wandlungsauslösung durch den PC übergeben. Der Messwert wird durch das Modul nach Fehlerkorrekturen (z.B. Offsetfehler) und einer Transformation in einen Spannungswert in μ V als Antwort übermittelt.

5.1 Single-Ended Betrieb

Im Single-Ended Betrieb stehen max. 8 Eingangskanäle zur Verfügung. Alle Eingangsspannungen werden gegen die Masse (AGND) der A/D-Komponenten gemessen (siehe Grafik 5.1). Eine genauere Beschreibung der Beschaltung ist in Kapitel 10.4 zu finden.

Grafik 5.1 A/D-Wandler Single Ended

Wie zuvor erwähnt wird dem Befehl zum Messen der Spannung ein Byte zur Kanalauswahl hinzugefügt. Welcher Wert für welchen Kanal einer single ended Messung verwendet werden muss, ist aus der Tabelle 5.1 zu entnehmen.

Kanal-Byte	Single Ended Kanalauswahl								
	1	2	3	4	5	6	7	8	AGND
O _{dez}	+								-
1 dez		+							-
2 _{dez}			+						-
3 _{dez}				+					-
4 _{dez}					+				-
5 _{dez}						+			-
6 _{dez}							+		-
7 _{dez}								+	-

Tabelle 5.1 A/D-Wandler Single Ended Messung

So muss für eine single ended Messung an Kanal 3 der Pluspol der Spannungsquelle an AIN03 und der Minuspol an AGND angeschlossen werden. Das Kanalbyte des Befehls besitzt den Wert 2_{dez} .

5.2 Differentieller Betrieb

Im differentiellen Betrieb stehen max. 4 Eingangskanäle zur Verfügung. In der differentiellen Betriebsart gibt es für jeden Kanal jeweils einen Plus- und einen Minus-Eingang (siehe Grafik 5.2-1). Bitte beachten Sie, dass für alle Kanäle ebenfalls ein Bezug zur Masse (AGND) hergestellt

werden muss. Eine genauere Beschreibung der Beschaltung ist in Kapitel 10.5 zu finden. Durch die Differenzmessung können allgemein auftretende Störspannungen auf beiden Signalleitungen und der Analogmassereduziertwerden.

Grafik 5.2-1 A/D-Wandler differentielle Messung

Auch hier findet die Kanalauswahl über das Kanalbyte im Befehl zur Spannungsmessung statt. Die entsprechenden Werte sind aus der folgenden Tabelle zu entnehmen.

Kanal-Byte		Differentielle Kanalauswahl							
	1	2	3	4	5	6	7	8	AGND
8 _{dez}	+	-							
9 _{dez}			+	-					
10 _{dez}					+	-			
11 _{dez}							+	-	
12 _{dez}	-	+							
13 _{dez}			-	+					
14 _{dez}					-	+			
15 _{dez}							-	+	

Tabelle 5.2 A/D-Wandler differentielle Messung

Als Beispiel soll nun die Differenz zwischen zwei Spannungen an den Eingängen AIN05 und AIN06 gemessen werden. Hierfür schließen sie die erste Spannung an AIN05 und die Zweite an AIN06 an (siehe Grafik 5.2-2).

Achtung: Falls sie eine unipolare Messung durchführen müssen sie darauf achten, dass die höhere der beiden Spannung dem "+" in der Tabelle entspricht!

Nun kann als Kanalbyte entweder der Wert 10_{dez} oder bei einer bipolaren Messung 14_{dez} (Ergebnis ist eine negative Differenzspannung) verwendet werden.

Grafik 5.2-2

Achtung: Achten Sie darauf, dass die Differenz zwischen den Eingängen ebenfalls innerhalb des Eingangsspannungsbereiches liegen muss. Eine Eingangsspannung an AIN05 von +10V und einer Eingangsspannung an AIN06 von -10V ergäbe eine Differenz von +20V und ist daher nicht messbar.

5.3 Kombination von Single Ended und Differenz Messung

Bei Bedarf können die Messvarianten wie in Grafik 5.3 auch von Kanal zu Kanal variiert werden oder sogar "on the fly" zwischen den einzelnen Messungen geändert werden.

Grafik 5.3

5.4 Eingangsspannungsbereich

Für die Spannungsmessung stehen mehrere Eingangsspannungsbereiche zur Verfügung. So kann die Messung unipolar (0-5V, 0-10V) oder bipolar (+/-5V, +/-10V) durchgeführt werden. Für die Auswahl des Bereichs wird mit dem Messbefehl durch den PC ein Bereichsbyte an das Modul mitgesendet. Folgend sind zu den einzelnen Bereichen die dazugehörigen Bytewerte aufgelistet.

Eingangsspannungsbereich						
Bytewert	unipolar					
0	0-10V					
1	0-5V					
	bipolar					
2	+/-10V					
3	+/-5V					

Tabelle 5.4 A/D-Wandler Eingangsspannungsbereiche

5.5 Abgleich der A/D-Eingänge

Das Modul wird beim Endtest unserer Produktion bei einer Umgebungstemperatur von ca. 20°C abgeglichen. Sollten bei der Endanwendung größere Temperaturabweichungen vorhanden sein, kann die A/D-Komponente des Moduls mittels nachträglichem Abgleich an die Umgebung angepasst werden. Die benötigte Software steht auf der CD bzw. im Internet zur Verfügung.

6. 2 D/A-Ausgänge 12Bit

Das EXDUL-371 besitzt insgesamt zwei Digital-Analog-Wandler. Beide können mit unterschiedlichen Ausgangsspannungsbereichen betrieben werden. Es können unipolare (0-5V, 0-10V) sowie bipolare Bereiche (+/-2.5V, +/-5V, +/-10V) verwendet werden.

6.1 Ausgangsspannungsbereich

Die beiden D/A-Wandler besitzen einen variablen Ausgangsspannungsbereich. Durch ein Konfigurationsbyte (Bereichsbyte), welches dem Wandlungsbefehl vom PC an das Modul hinzugefügt wird, kann zwischen einem unipolaren oder einem bipolaren Bereich gewählt werden. Diese Auswahl kann "on-the-fly" geändert werden, d.h. Sie können bei der einen Spannungsausgabe (z.B. -7V) den Bereich bipolar +/-10V und bei der folgenden Ausgabe (z.B. -3V) den Bereich bipolar +/-5V verwenden, um eine höhere Auflösung zu erzielen.

Die Zuordnung des Bereichsbyte-Wertes und Ausgangsspannungsbereichs kann aus folgender Tabelle abgelesen werden.

Ausgangsspannungsbereich						
Bereichsbyte	unipolar					
0	0-10V					
1	0-5V					
	bipolar					
2	+/-10V					
3	+/-5V					
4	+/-2.5V					

Tabelle 6.1 D/A-Wandler Ausgangsspannungsbereiche

6.2 Abgleich der D/A-Ausgänge

Das Modul wird beim Endtest unserer Produktion bei einer Umgebungstemperatur von ca. 20°C abgeglichen. Sollten bei der Endanwendung größere Temperaturabweichungen vorhanden sein, kann die D/A-Komponente des Moduls mittels nachträglichem Abgleich an die Umgebung angepasst werden. Die benötigte Software steht auf der CD bzw. im Internet zur Verfügung.

7. Installation der Windows[®]-Treiber

Sobald das USB-Modul EXDUL-371E / EXDUL-371S das erste mal am PC angeschlossen wird, erkennt Windows automatisch ein neues Gerät und sucht nach einem passenden Treiber.

Geben Sie zur Treiberinstallation dem Windows-Hardwareassistenten den Ordner bzw. das Verzeichnis und den Namen der Setup-Datei "wascoxmfe_v0x.inf" (anstelle von x die Versions-Nr. der INF-Datei eintragen z.B. wascoxmfe_v06.inf) an.

Nach der Aktualisierung der Treiberdatenbank informiert Sie der Hardwareassistent über die erfolgreiche Installation des Treibers.

Im Windows-Gerätemanager wird das EXDUL-371E / EXDUL-371S im Verzeichnis Anschlüsse (COM/LPT) als Wasco-USB-Kommunikationsport COMx geführt. Jedes Windowsprogramm kann auf die virtuelle Schnittstelle so zugreifen, als handle es sich um einen echten COM-Port.

8. Programmierung unter Windows®

8.1 Einführung

Nach erfolgreicher Installation wird das EXDUL-371E / EXDUL-371S im Windows-Gerätemanager als Wasco-Communications-Port COMx geführt. Es handelt sich hierbei um ein CDC-Device (Communications Device Class), das über einen virtuellen COM-Port angesprochen wird. Der Softwarezugriff auf diesen virtuellen COM-Port erfolgt wie über eine normale COM-Schnittstelle über Standard-Windows[®]-Treiber, eine Installation eines zusätzlichen Treibers ist nicht notwendig.

8.2 Kommunikation mit dem EXDUL-371

Der Datenaustausch erfolgt durch Senden bzw. Empfangen von einem Block mit 23 Bytes über die virtuelle COM-Schnittstelle.

Jeder erlaubte Sendestring wird mit einem definierten Ergebnis- bzw. Bestätigungsstring beantwortet.

Vor dem Senden eines Strings muss der letzte Ergebnis- bzw. Bestätigungsstring gelesen werden.

Grafik 8.2 Kommunikationsmodell

8.3 Windows®-Funktionen für die Programmierung

Die Programmierung des EXDUL-371E / EXDUL-371S erfolgt entweder über WIN32 API Funktionen oder sehr komfortabel über ein bereits vorhandenes SerialPort Object in einer Programmiersprache. Beispielprogramme hierzu finden Sie nach der Installation der Software im Installationsverzeichnis auf Ihrem Rechner.

Windows-Funktionen für die Programmierung:

- CreateFile
- GetCommState
- SetCommState
- WriteFile
- ReadFile
- DCB-Struktur (beschreibt die Kontroll-Parameter des Devices)

8.4 Register HW-Kennung und Seriennummer

Byte	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
HW-Kennung	E	X	D	U	L	-	3	7	1	v	1		0	2		
	45 _{hex}	58hex	44 _{hex}	55 _{hex}	4C _{hex}	2D _{hex}	33_{hex}	37_{hex}	31 _{hex}	76 _{hex}	31 _{hex}	3E _{hex}	30 _{hex}	32 _{hex}	20 _{hex}	20 _{hex}
S/N	1	0	4	4	0	2	6									
	01 _{hex}	00 _{hex}	04 _{hex}	04 _{hex}	00 _{hex}	02 _{hex}	06 _{hex}	FF_{hex}	FF_{hex}	FFhex	FF_{hex}	FFhex	FF_{hex}	FFhex	FFhex	FFhex

Tabelle 8.4 Register HW-Kennung und Seriennummer

Im Register HW-Kennung ist der Modulname sowie die Version der Firmware abgelegt und kann zur Feststellung der Produkt-Identität vom User gelesen werden. Die Hardware-Kennung endet mit einem Leerzeichen. In der o. a. Tabelle sind als Beispiel in der Zeile HW-Kennung jeweils der Hex-Wert und das dazugehörige ASCII-Zeichen für das Modul EXDUL-371 mit Firmware-Version 1.02 dargestellt.

Das Register Serien-Nummer kann vom Anwender lediglich gelesen werden. Die Serien-Nummer in der o. a. Tabelle dient als Formatbeispiel. In der Zeile S/N ist jeweils der Hex-Wert und darüber das dazugehörige ASCII-Zeichen für die Serien-Nummer 1044026 dargestellt.

Byte	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Llcor A																
USEIA	20 _{hex}	20 _{hex}	20 _{hex}	20 _{hex}	20_{hex}	20 _{hex}	20_{hex}	20 _{hex}	20 _{hex}	20 _{hex}	20_{hex}					
HeerP																
USEID	20 _{hex}	20 _{hex}	20 _{hex}	20 _{hex}	20_{hex}	20 _{hex}	20_{hex}	20 _{hex}	20 _{hex}	20 _{hex}	20 _{hex}					
USerLCD1m [*]	20 _{hex}	20 _{hex}	20 _{hex}	20 _{hex}	20_{hex}	20 _{hex}	20_{hex}	20 _{hex}	20_{hex}	20 _{hex}	20 _{hex}	20_{hex}	20 _{hex}	20_{hex}	20 _{hex}	20_{hex}
Lloorl CD2m*																
USEILCDZIII	20 _{hex}															

8.5 Speicherbereiche UserA, UserB, UserLCD1m* und UserLCD2m*

Tabelle 8.5 Speicherbereiche

In den Registern UserA, UserB, UserLCD1m* und UserLCD2m* können jeweils 16 Stellen (16 Byte) zur eigenen Verwendung genutzt werden. Die Daten bleiben beim Ausschalten erhalten, ein Default-Reset setzt diese Register in die Werkseinstellung (Auslieferungszustand) zurück. Im Auslieferungszustand steht in allen vier User-Speicherbereichen an jeder Stelle der Hex-Wert 20, der im ASCII-Code einem Leer-Zeichen entspricht. In der o. a. Tabelle sind jeweils der Hex-Wert und darüber das dazugehörige ASCII-Zeichen dargestellt.

*: Nur für EXDUL-371E zutreffend, bei EXDUL-371S ohne Funktion!

Die Daten aus den Speicher-Registern UserLCD1m* und UserLCD2m* werden bei aktivierten UserLCD-Modus nach dem Modul-Start solange im Display des EXDUL-371E dargestellt, bis neue Benutzerdaten über UserLCD-Zeile1 und UserLCD-Zeile2 auf die LCD-Anzeige geschrieben werden.

8.6 Display-Register UserLCD-Zeile1*, UserLCD-Zeile2* und LCD-Kontrast*

Die Register UserLCD-Zeile1 und UserLCD-Zeile2 dienen bei aktivierten UserLCD-Modus zum Beschreiben der beiden LCD-Zeilen mit jeweils 16 beliebigen Zeichen. Mit Übernahme der Daten erfolgt die Anzeige im Display anstelle der Daten aus UserLCD1m* und UserLCD2m*. Die Daten in den Registern UserLCD-Zeile1 und UserLCD-Zeile2 bleiben beim Ausschalten **nicht** erhalten. Über das Register LCD-Kontrast ist der Display-Kontrast einstellbar, der auch beim Ausschalten erhalten bleibt.

8.7 Befehls- und Datenformat

Der Datenaustausch erfolgt durch Senden und Empfangen von Strings. Eine Sende- bzw. Empfangszeichenkette besteht aus 23 Bytes (1 Byte je Zeichen). Jede Zeichenkette ist aus vier Befehlsbytes, 16 Datenbytes und 3 Fehlerbytes aufgebaut.

Konfigurations- und Ausgabebefehle werden durch das Rücksenden der betreffenden Zeichenkette bestätigt. Bei Lesebefehlen erfolgt die Rücksendung einer Zeichenkette mit Operationscode und dem gelesenen Wert.

*: Nur für EXDUL-371E zutreffend, bei EXDUL-371S ohne Funktion!

8.8 Befehlsübersicht

Hexcode	Beschreibung
0C 00 00 00	UserA schreiben
0C 00 00 01	UserA lesen
0C 00 00 02	UserB schreiben
0C 00 00 03	UserB lesen
0C 00 03 07	UserLCD1m schreiben
0C 00 03 09	UserLCD1m lesen
0C 00 03 08	UserLCD2m schreiben
0C 00 03 0A	UserLCD2m lesen
0C 00 03 00	UserLCD-Zeile1 schreiben
0C 00 03 02	UserLCD-Zeile1 lesen
0C 00 03 01	UserLCD-Zeile2 schreiben
0C 00 03 03	UserLCD-Zeile2 lesen
0C 00 03 04	UserLCD-Mode enable / disable
0C 00 03 05	UserLCD Mode Status lesen
0C 00 03 0B	LCD-Kontrast schreiben
0C 00 03 0C	LCD-Kontrast lesen
0C 00 04 01	HW-Kennung lesen
0C 00 05 01	Serien-Nummer lesen
08 00 01 01	Optokoppler-Eingangsport lesen
08 00 00 00	Optokoppler-Ausgangsport schreiben
08 00 00 01	Optokoppler-Ausgangsport lesen (Statusabfrage)

*: Nur für EXDUL-371E zutreffend, bei EXDUL-371S ohne Funktion!

09 00 00 00	Zähler starten
09 00 00 01	Zähler stoppen
09 00 00 02	Zähler Zustand lesen
09 00 00 03	Zähler lesen
0A 00 00 01	D/A-Wandlung abgeglichen
0A 00 00 03	A/D-Wandlung abgeglichen
0C 00 0C 0F	Werksreset (Grundzustand herstellen)

8.9 Befehlszusammensetzung

8.9.1 Schreiben in User-Bereich A und B

Beispiel: Schreiben der Zeichenfolge EXDUL-371 in Register UserA und UserB

Byte	Senden	Rückantwort	Beschreibung
0	0C	0C	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	00	00	Befehlscode 3. Byte
3	00 (UserA) 02 (UserB)	00 (UserA) 02 (UserB)	Befehlscode 4. Byte
4	45	45	Daten 1. Zeichen E _{asci}
5	58	58	Daten 2. Zeichen Xasci
6	44	44	Daten 3. Zeichen Dasci
7	55	55	Daten 4. Zeichen Uasci
8	4C	4C	Daten 5. Zeichen Lasci
9	2D	2D	Daten 6. Zeichen -asci
10	33	33	Daten 7. Zeichen 3 _{asci}
11	37	37	Daten 8. Zeichen 7 _{asci}
12	31	31	Daten 9. Zeichen 1 _{asci}
13	20	20	Daten 10. Zeichen [Leer] _{asci}
14	20	20	Daten 11. Zeichen [Leer] _{asci}
15	20	20	Daten 12. Zeichen [Leer]asci
16	20	20	Daten 13. Zeichen [Leer]asci
17	20	20	Daten 14. Zeichen [Leer]asci
18	20	20	Daten 15. Zeichen [Leer] _{asci}
19	20	20	Daten 16. Zeichen [Leer]asci
2022			Reserviert für Fehlercode/Fehlerkennung

8.9.2 Lesen aus User-Bereich A und B

Beispiel: Lesen der Zeichenfolge EXDUL-371 aus Register UserA und UserB

Byte	Senden	Rückantwort	Beschreibung
0	0C	0C	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	00	00	Befehlscode 3. Byte
3	01 (UserA) 03 (UserB)	01 (UserA) 03 (UserB)	Befehlscode 4. Byte
4	xx	45	Daten 1. Zeichen E _{asci}
5	XX	58	Daten 2. Zeichen X _{asci}
6	XX	44	Daten 3. Zeichen Dasci
7	XX	55	Daten 4. Zeichen U _{asci}
8	XX	4C	Daten 5. Zeichen L _{asci}
9	XX	2D	Daten 6. Zeichen -asci
10	33	33	Daten 7. Zeichen 3 _{asci}
11	37	37	Daten 8. Zeichen 7 _{asci}
12	31	31	Daten 9. Zeichen 1 _{asci}
13	XX	20	Daten 10. Zeichen [Leer] _{asci}
14	XX	20	Daten 11. Zeichen [Leer] _{asci}
15	XX	20	Daten 12. Zeichen [Leer] _{asci}
16	XX	20	Daten 13. Zeichen [Leer] _{asci}
17	XX	20	Daten 14. Zeichen [Leer]asci
18	ХХ	20	Daten 15. Zeichen [Leer] _{asci}
19	XX	20	Daten 16. Zeichen [Leer] _{asci}
2022			Reserviert für Fehlercode/Fehlerkennung

8.9.3 Schreiben in UserLCD1m* und UserLCD2m*

Beispiel: Schreiben der Zeichenfolge EXDUL-371 in Register UserLCD1m* und UserLCD2m*

Byte	Senden	Rückantwort	Beschreibung
0	0C	0C	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	03	03	Befehlscode 3. Byte
3	07 (UserLCD1m) 08 (UserLCD2m)	07 (UserLCD1m) 08 (UserLCD2m)	Befehlscode 4. Byte
4	45	45	Daten 1. Zeichen Easci
5	58	58	Daten 2. Zeichen X _{asci}
6	44	44	Daten 3. Zeichen Dasci
7	55	55	Daten 4. Zeichen U _{asci}
8	4C	4C	Daten 5. Zeichen Lasci
9	2D	2D	Daten 6. Zeichen -asci
10	33	33	Daten 7. Zeichen 3asci
11	37	37	Daten 8. Zeichen 7 _{asci}
12	31	31	Daten 9. Zeichen 1 _{asci}
13	20	20	Daten 10. Zeichen [Leer] _{asci}
14	20	20	Daten 11. Zeichen [Leer] _{asci}
15	20	20	Daten 12. Zeichen [Leer] _{asci}
16	20	20	Daten 13. Zeichen [Leer] _{asci}
17	20	20	Daten 14. Zeichen [Leer] _{asci}
18	20	20	Daten 15. Zeichen [Leer] _{asci}
19	20	20	Daten 16. Zeichen [Leer] _{asci}
2022			Reserviert für Fehlercode/Fehlerkennung

8.9.4 Lesen aus UserLCD1m* und UserLCD2m*

Beispiel: Lesen der Zeichenfolge EXDUL-371 aus Register UserLCD1m* und UserLCD2m*

Byte	Senden	Rückantwort	Beschreibung
0	0C	0C	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	03	03	Befehlscode 3. Byte
3	09 (UserLCD1m) 0A (UserLCD2m)	09 (UserLCD1m) 0A (UserLCD2m)	Befehlscode 4. Byte
4	XX	45	Daten 1. Zeichen E _{asci}
5	XX	58	Daten 2. Zeichen X _{asci}
6	XX	44	Daten 3. Zeichen Dasci
7	XX	55	Daten 4. Zeichen U _{asci}
8	XX	4C	Daten 5. Zeichen Lasci
9	XX	2D	Daten 6. Zeichen -asci
10	XX	33	Daten 7. Zeichen 3 _{asci}
11	XX	37	Daten 8. Zeichen 7 _{asci}
12	xx	31	Daten 9. Zeichen 1 _{asci}
13	XX	20	Daten 10. Zeichen [Leer] _{asci}
14	XX	20	Daten 11. Zeichen [Leer] _{asci}
15	XX	20	Daten 12. Zeichen [Leer] _{asci}
16	XX	20	Daten 13. Zeichen [Leer] _{asci}
17	XX	20	Daten 14. Zeichen [Leer]asci
18	XX	20	Daten 15. Zeichen [Leer] _{asci}
19	XX	20	Daten 16. Zeichen [Leer] _{asci}
2022			Reserviert für Fehlercode/Fehlerkennung

8.9.5 Schreiben in UserLCD1* und UserLCD2*

Beispiel: Schreiben der Zeichenfolge EXDUL-371 in UserLCD1* bzw. UserLCD2*

Byte	Senden	Rückantwort	Beschreibung
0	0C	0C	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	03	03	Befehlscode 3. Byte
3	00 (UserLCD1) 01 (UserLCD2)	00 (UserLCD1) 01 (UserLCD2)	Befehlscode 4. Byte
4	45	45	Daten 1. Zeichen E _{asci}
5	58	58	Daten 2. Zeichen X _{asci}
6	44	44	Daten 3. Zeichen D _{asci}
7	55	55	Daten 4. Zeichen U _{asci}
8	4C	4C	Daten 5. Zeichen Lasci
9	2D	2D	Daten 6. Zeichen -asci
10	35	33	Daten 7. Zeichen 3 _{asci}
11	31	37	Daten 8. Zeichen 7 _{asci}
12	36	31	Daten 9. Zeichen 1 _{asci}
13	20	20	Daten 10. Zeichen [Leer] _{asci}
14	20	20	Daten 11. Zeichen [Leer] _{asci}
15	20	20	Daten 12. Zeichen [Leer] _{asci}
16	20	20	Daten 13. Zeichen [Leer] _{asci}
17	20	20	Daten 14. Zeichen [Leer] _{asci}
18	20	20	Daten 15. Zeichen [Leer] _{asci}
19	20	20	Daten 16. Zeichen [Leer] _{asci}
2022			Reserviert für Fehlercode/Fehlerkennung

8.9.6 Lesen aus UserLCD1* und UserLCD2*

Beispiel: Lesen der Zeichenfolge EXDUL-371 aus UserLCD1* bzw. UserLCD2*

Byte	Senden	Rückantwort	Beschreibung
0	0C	0C	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	03	03	Befehlscode 3. Byte
3	02 (UserLCD1) 03 (UserLCD2)	02 (UserLCD1) 03 (UserLCD2)	Befehlscode 4. Byte
4	XX	45	Daten 1. Zeichen Easci
5	XX	58	Daten 2. Zeichen X _{asci}
6	XX	44	Daten 3. Zeichen Dasci
7	XX	55	Daten 4. Zeichen U _{asci}
8	XX	4C	Daten 5. Zeichen Lasci
9	XX	2D	Daten 6. Zeichen -asci
10	XX	33	Daten 7. Zeichen 3 _{asci}
11	XX	37	Daten 8. Zeichen 7 _{asci}
12	xx	31	Daten 9. Zeichen 1 _{asci}
13	XX	20	Daten 10. Zeichen [Leer] _{asci}
14	XX	20	Daten 11. Zeichen [Leer] _{asci}
15	XX	20	Daten 12. Zeichen [Leer] _{asci}
16	XX	20	Daten 13. Zeichen [Leer] _{asci}
17	XX	20	Daten 14. Zeichen [Leer] _{asci}
18	XX	20	Daten 15. Zeichen [Leer] _{asci}
19	XX	20	Daten 16. Zeichen [Leer] _{asci}
2022			Reserviert für Fehlercode/Fehlerkennung

8.9.7 Schreiben UserLCD-Mode

Beispiel: Enable UserLCD-Mode

Byte	Senden	Rückantwort	Beschreibung
0	0C	0C	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	03	03	Befehlscode 3. Byte
3	04	04	Befehlscode 4. Byte
4	01	01	01 = enable / 00 = disable
519			Reserviert, bei diesem Befehl ohne Bedeutung
2022			Reserviert für Fehlercode/Fehlerkennung

8.9.8 Lesen UserLCD-Mode

Beispiel: UserLCD-Mode ist enable

Byte	Senden	Rückantwort	Beschreibung
0	0C	0C	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	03	03	Befehlscode 3. Byte
3	05	05	Befehlscode 4. Byte
4	XX	01 01 = enable / 00 = disable	
519		Reserviert, bei diesem Befehl ohne Bedeutung	
2022		Reserviert für Fehlercode/Fehlerkennung	

8.9.9 Lesen der Hardwarekennung

Beispiel: Lesen der Hardwarekennung EXDUL-371V1.02

Byte	Senden	Rückantwort	Beschreibung
0	0C	0C	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	04	04	Befehlscode 3. Byte
3	01	01	Befehlscode 4. Byte
4	ХХ	45	Daten 1. Zeichen E _{asci}
5	XX	58	Daten 2. Zeichen X _{asci}
6	XX	44	Daten 3. Zeichen Dasci
7	XX	55	Daten 4. Zeichen Uasci
8	XX	4C	Daten 5. Zeichen Lasci
9	XX	2D	Daten 6. Zeichen -asci
10	XX	33	Daten 7. Zeichen 3asci
11	XX	37	Daten 8. Zeichen 7 _{asci}
12	XX	31	Daten 9. Zeichen 1 _{asci}
13	XX	76	Daten 10. Zeichen vasci
14	XX	31	Daten 11. Zeichen 1 _{asci}
15	XX	2E	Daten 12. Zeichen .asci
16	XX	30	Daten 13. Zeichen 0 _{asci}
17	XX	32	Daten 14. Zeichen 2 _{asci}
18	XX	20	Daten 15. Zeichen [Leer] _{asci}
19	ХХ	20	Daten 16. Zeichen [Leer] _{asci}
2022			Reserviert für Fehlercode/Fehlerkennung

8.9.10 Lesen der Seriennummer

Beispiel: Lesen der Seriennummer 1044026

Byte	Senden	Rückantwort	Beschreibung
0	0C	0C	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	05	05	Befehlscode 3. Byte
3	01	01	Befehlscode 4. Byte
4	xx	01	Daten 1. Zeichen 1 _{dez}
5	XX	00	Daten 2. Zeichen 0 _{dez}
6	XX	04	Daten 3. Zeichen 4 _{dez}
7	XX	04	Daten 4. Zeichen 4 _{dez}
8	XX	00	Daten 5. Zeichen 0dez
9	XX	02	Daten 6. Zeichen 2dez
10	XX	06	Daten 7. Zeichen 6dez
1119	XX	20	Reserviert, bei diesem Befehl ohne Bedeutung
2022			Reserviert für Fehlercode/Fehlerkennung

8.9.11 Lesen Optokoppler-Eingangsport

Beispiel: Lesen der Eingänge am Optokoppler-Eingangsport. Voraussetzung für dieses Beispiel ist das Anlegen der Eingangspegel (0 = Low = 0...3 V; 1 = High = 10...30 V) an den einzelnen Eingängen nach folgender Tabelle:

Eingangskanal	IN02	IN01	IN00
Schraubklemme	21	19	17
Eingangspegel	0	1	1
Display-Anzeige*	А	E	E

Byte	Senden	Rückantwort	Beschreibung
0	08	08	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	01	01	Befehlscode 3. Byte
3	01	01	Befehlscode 4. Byte
4	xx	03 Lesewert (0007)	
519		Reserviert, bei diesem Befehl ohne Bedeutung	
2022		Reserviert für Fehlercode/Fehlerkennung	

8.9.12 Schreiben Optokoppler-Ausgangsport

Beispiel: Durchschalten des Optokoppler an Kanal OUT01, (Optokoppler durchgeschaltet = 1; Optokoppler nicht durchgeschaltet = 0)

Ausgangskanal	OUT01	OUT00
Schraubklemme	15	13
Schaltzustand	1	0
Display-Anzeige*	E	А

Byte	Senden	Rückantwort	Beschreibung
0	08	08	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	00	00	Befehlscode 3. Byte
3	00	00	Befehlscode 4. Byte
4	5C	02 Übergabewert (0003)	
519		Reserviert, bei diesem Befehl ohne Bedeutung	
2022		Reserviert für Fehlercode/Fehlerkennung	

8.9.13 Readback Optokoppler-Ausgangsport (Statusabfrage)

Beispiel: Durchschalten der Optokoppler an Kanal OUT01, (Optokoppler durchgeschaltet = 1; Optokoppler nicht durchgeschaltet = 0)

Ausgangskanal	OUT01	OUT00
Schraubklemme	15	13
Schaltzustand	1	0
Display-Anzeige*	E	А

Byte	Senden	Rückantwort	Beschreibung
0	08	08	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	00	00	Befehlscode 3. Byte
3	01	01	Befehlscode 4. Byte
4	XX	02 Übergabewert (0003)	
519		Reserviert, bei diesem Befehl ohne Bedeutung	
2022		Reserviert für Fehlercode/Fehlerkennung	

8.9.14 Zähler starten

Mit jedem Start-Befehl wird der Zähler auf 0 zurückgesetzt und beginnt aufwärts zu zählen, bei einem Zählbereich von 0...65535.

Byte	Senden	Rückantwort	Beschreibung
0	09	09	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	00	00	Befehlscode 3. Byte
3	00	00	Befehlscode 4. Byte
419			Reserviert, bei diesem Befehl ohne Bedeutung
2022			Reserviert für Fehlercode/Fehlerkennung

8.9.15 Readback Zählerstart (Statusabfrage)

Beispiel: Zähler gestartet

Byte	Senden	Rückantwort	Beschreibung
0	09	09	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	00	00	Befehlscode 3. Byte
3	02	02	Befehlscode 4. Byte
4	ХХ	01	01 = Zähler gestartet (00 = Zähler gestoppt)
519			Reserviert, bei diesem Befehl ohne Bedeutung
2022			Reserviert für Fehlercode/Fehlerkennung

Byte	Senden	Rückantwort	Beschreibung
0	09	09	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	00	00	Befehlscode 3. Byte
3	01	01	Befehlscode 4. Byte
419			Reserviert, bei diesem Befehl ohne Bedeutung
2022			Reserviert für Fehlercode/Fehlerkennung

8.9.16 Zähler stoppen

8.9.17 Zählerstand lesen

Beispiel 1: Lesen Zählerstand 2047 (ohne Überlauf)

Byte	Senden	Rückantwort	Beschreibung
0	09	09	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	00	00	Befehlscode 3. Byte
3	03	03	Befehlscode 4. Byte
4	XX	00	Überlaufflag (wird gesetzt nach Zählbereichsüberschreitung)
5	ХХ	07	Lesewert (Highbyte - 00FF)
6	XX	FF	Lesewert (Lowbyte - 00FF)
719			Reserviert, bei diesem Befehl ohne Bedeutung
2022			Reserviert für Fehlercode/Fehlerkennung

Zählerstand = Lesewert High-Byte x 256 + Lesewert Low-Byte

Beispiel 2: Lesen Zählerstand 2047 nach Überschreitung des Zählbereichs (mit Überlauf)

Byte	Senden	Rückantwort	Beschreibung
4	XX	01	Überlaufflag (wird gesetzt nach Zählbereichsüberschreitung)
5	XX	07	Lesewert (Highbyte - 00FF)
6	XX	FF	Lesewert (Lowbyte - 00FF)

Zählerstand = Lesewert High-Byte x 256 + Lesewert Low-Byte

8.9.18 Schreiben LCD-Kontrastwert*

Über diesen Befehl ist der Display-Kontrast einstellbar. Werte zwischen 0 und 4095 werden akzeptiert, der Display-Kontrast verringert sich mit ansteigenden Wert. Eine angenehme Darstellung wird im Bereich von 800 bis 1800 erreicht.

Byte	Senden	Rückantwort	Beschreibung
0	0C	0C	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	03	03	Befehlscode 3. Byte
3	0B	0B	Befehlscode 4. Byte
4	03	03	Lesewert (Highbyte - 000F)
5	20	20	Lesewert (Lowbyte - 00FF)
619			Reserviert, bei diesem Befehl ohne Bedeutung
2022			Reserviert für Fehlercode/Fehlerkennung

Beispiel: Display-Kontrast-Wert 800

Kontrastwert = Übergabewert High-Byte x 256 + Übergabewert Low-Byte (03 20 = 800)

Beispiel: Display-Kontrast-Wert 1800

Byte	Senden	Rückantwort	Beschreibung
4	07	07	Übergabewert (High-Byte - 000F)
5	08	08	Übergabewert (Low-Byte - 00FF)

Kontrastwert = Übergabewert High-Byte x 256 + Übergabewert Low-Byte (07 08 = 1800)

8.9.19 Lesen LCD-Kontrastwert*

Byte	Senden	Rückantwort	Beschreibung
0	0C	0C	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	03	03	Befehlscode 3. Byte
3	0C	0C	Befehlscode 4. Byte
4	xx	03	Lesewert (Highbyte - 000F)
5	XX	20	Lesewert (Lowbyte - 00FF)
619			Reserviert, bei diesem Befehl ohne Bedeutung
2022			Reserviert für Fehlercode/Fehlerkennung

Beispiel: Display-Kontrast-Wert 800

Kontrastwert = Übergabewert High-Byte x 256 + Übergabewert Low-Byte (03 20 = 800)

Byte	Senden	Rückantwort	Beschreibung
4	XX	03	Übergabewert (High-Byte - 000F)
5	XX	E8	Übergabewert (Low-Byte - 00FF)

Beispiel: Display-Kontrast-Wert 1000 (Werkseinstellung bei Auslieferung)

Kontrastwert = Übergabewert High-Byte x 256 + Übergabewert Low-Byte (03 E8 = 1000)

8.9.20 D/A-Wandlung

Beispiel:

Ausgeben einer Spannung von +7.5V an AOUT00+ (Klemme 11). Dafür wird hier ein Ausgangsspannungsbereich von 0-10V verwendet.

+7.5V entsprechen +7500000µV, welche auf drei Bytes aufgeteilt werden müssen.

7500000 = 7270E0_{hex} oder

Byte 2: 7500000 / 65536 = 114 Rest 28896 Byte 1: 28896 / 256 = 112 Rest 224

Byte 0: 224

Byte	Senden	Rückantwort	Beschreibung
0	0A	0A	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	00	00	Befehlscode 3. Byte
3	01	01	Befehlscode 4. Byte
4	00	01	AOUT00+ = 0, AOUT01+ = 1
5	00	00	Bereichsbyte (0-10V) = 0
6	XX	XX	Reserviert
7	ХХ	XX	Reserviert
8	00	00	Vorzeichen (+ = 0, - = 1)
9	72	72	Spannungswert Byte 2
10	70	70	Spannungswert Byte 1
11	E0	E0	Spannungswert Byte 0
1219	XX	XX	Reserviert
2022			Reserviert für Fehlercode/Fehlerkennung

Ausgangsspannungsbereich	
Bereichsbyte	unipolar
0	0-10V
1	0-5V
	bipolar
2	+/-10V
3	+/-5V
4	+/-2.5V

8.9.21 A/D-Wandlung

Beispiel:

Messen einer Spannung von +7.5V an AIN03+ (Klemme 4). Als Eingangsspannungsbereich wird ein Bereich von 0-10V verwendet und als Messart eine Single-Ended-Messung (Kanalbyte = 3).

Für andere Messarten kann der entsprechende Wert für das Kanalbyte aus der Tabelle 5.1 in Kapitel 5.1 für Single-Ended-Messungen und aus Tabelle 5.2 in Kapitel 5.2 für Differential-Messungen entnommen werden.

Byte	Senden	Rückantwort	Beschreibung
0	0A	0A	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	00	00	Befehlscode 3. Byte
3	03	03	Befehlscode 4. Byte
4	03	03	Kanalbyte
5	00	00	Bereichsbyte (0-10V) = 0
6	XX	XX	Reserviert
7	XX	XX	Reserviert
8	XX	00	Vorzeichen (+ = 0, - = 1)
9	XX	72	Spannungswert Byte 2
10	XX	70	Spannungswert Byte 1
11	XX	E0	Spannungswert Byte 0
1219	XX	XX	Reserviert
2022			Reserviert für Fehlercode/Fehlerkennung

Die gemessene Spannung lässt sich wie folgt berechnen: Spannung = Byte2 * 65536 + Byte1 * 256 + Byte0

Im Beispiel beträgt die gemessene Spannung: Spannung = $72_{hex} * 65536 + 70_{hex} * 256 + E0_{hex} = +7500000 \mu V$ (positiv da Vorzeichen-Byte = 0)

Eingangsspannungsbereich				
Bytewert	unipolar			
0	0-10V			
1	0-5V			
	bipolar			
2	+/-10V			
3	+/-5V			

8.9.22 Werksreset

Beschreibung: Stellt den Grundzustand wieder her

Byte	Senden	Rückantwort	Beschreibung
0	0C	0C	Befehlscode 1. Byte
1	00	00	Befehlscode 2. Byte
2	0C	0C	Befehlscode 3. Byte
3	0F	0F	Befehlscode 4. Byte
	I	1	
419			Reserviert, bei diesem Befehl ohne Bedeutung
2022			Reserviert für Fehlercode/Fehlerkennung

9. Technische Daten

A/D-Eingänge

8 Eingänge single-ended (se) oder 4 Eingänge differentiell (diff) oder kombiniert se/diff per SW wählbar Auflösung: 12 Bit Eingangsspannungsbreich unipolar: 0..5 Volt, 0..10 Volt bipolar: +/-5 Volt, +/-10 Volt Absolute Accuracy: typ 0.1 % +/- 1 LSB Eingangswiderstand: unipolar 42 kΩ bipolar 31 kΩ Überspannungsschutz: 20V Messzyklus: max. 1 ms

D/A-Ausgänge

2 Ausgänge Auflösung: 12 Bit AA: typ 0.1 % +/- 1 LSB Ausgangsspannungsbereich unipolar: 0..5 Volt, 0..10 Volt bipolar: +/-2.5 Volt, +/-5 Volt, +/-10 Volt Ausgangsstrom: max +/-5 mA

Digitale Eingänge über Optokoppler

3 Kanäle, einzeln galvanisch getrennt Ein Kanal programmierbar als Zählereingang Optokoppler mit integrierter Schmitt-Trigger-Funktion Überspannungsschutz-Dioden Eingangsspannungsbereich high = 10..30 Volt low = 0..3 Volt Eingangsfrequenz: max. 10 kHz

Digitale Ausgänge über Optokoppler

2 Kanäle, einzeln galvanisch getrennt Leistungsoptokoppler Verpolungsschutz-Dioden Ausgangsstrom: max. 150 mA Spannung-CE: max. 50 V

Zähler

1 programmierbarer Zähler 16 Bit (belegt den ersten Optokoppler-Eingang) Zählfrequenz: max. 5 kHz

LCD Anzeige

Matrixanzeige mit 2 Zeilen und 16 Spalten zur Darstellung von 16 Zeichen je Zeile Programmierbar zur Darstellung anwendungsspezifische Daten oder als I/O-Zustandsanzeige Betriebsspannung +18 V...+36 V (externe Spannungsversorgung)

USB-Schnittstelle

USB 2.0 kompatibel USB-Anschluss Plug&Play (hotpluggable, auch im laufenden Betrieb anschließbar)

Modul-Anschlüsse

1 * 24polige Schraubklemmleiste 1 * USB-Buchse Typ B

USB-Anschlussleitung

1 * USB-Stecker Typ A 1 * USB-Stecker Typ B

Abmessungen

105 mm x 89 mm x 59 mm (l x b x h)

Gehäuse

Isolierstoffgehäuse mit integrierter Schnapptechnik zur DIN EN-Hutschienenmontage Geeignet für Aufbaumontagen, Schaltschrank- und Verteilereinbau sowie für mobile Tischeinsätze

10. Beschaltungsbeispiele

10.1 Beschaltung der Optokoppler-Eingänge

Grafik 10.1 Beschaltung der Optokopplereingänge

10.2 Beschaltung der Optokoppler-Ausgänge

Grafik 10.2 Beschaltung der Optokoppler-Ausgänge

10.3 Beschaltung der D/A-Ausgänge

Grafik 10.3 Beschaltung der beiden DA-Ausgänge

10.4 Beschaltung der A/D-Eingänge single ended

Grafik 10.4 Beschaltung der AD-Eingänge (Single Ended)

10.5 Beschaltung der A/D-Eingänge differentiell

Grafik 10.5 Beschaltung der AD-Eingänge (differentiell)

11. ASCII-Tabelle

Hex	Dez	Binär	Zeichen	Hex	Dez	Binär	Zeichen
00	0	00000000		28	40	00101000	(
01	1	00000001		29	41	00101001)
02	2	00000010		2A	42	00101010	*
03	3	00000011		2B	43	00101011	+
04	4	00000100		2C	44	00101100	,
05	5	00000101		2D	45	00101101	-
06	6	00000110		2E	46	00101110	
07	7	00000111		2F	47	00101111	/
08	8	00001000		30	48	00110000	0
09	9	00001001		31	49	00110001	1
0A	10	00001010		32	50	00110010	2
0B	11	00001011		33	51	00110011	3
0C	12	00001100		34	52	00110100	4
0D	13	00001101		35	53	00110101	5
0E	14	00001110		36	54	00110110	6
0F	15	00001111		37	55	00110111	7
10	16	00010000		38	56	00111000	8
11	17	00010001		39	57	00111001	9
12	18	00010010		3A	58	00111010	:
13	19	00010011		3B	59	00111011	- 3
14	20	00010100		3C	60	00111100	<
15	21	00010101		3D	61	00111101	=
16	22	00010110		3E	62	00111110	>
17	23	00010111		3F	63	00111111	?
18	24	00011000		40	64	01000000	@
19	25	00011001		41	65	01000001	A
1A	26	00011010		42	66	01000010	В
1B	27	00011011		43	67	01000011	С
1C	28	00011100		44	68	01000100	D
1D	29	00011101		45	69	01000101	E
1E	30	00011110		46	70	01000110	F
1F	31	00011111		47	71	01000111	G
20	32	00100000	[Leer]	48	72	01001000	Н
21	33	00100001	!	49	73	01001001	I
22	34	00100010	53	4A	74	01001010	J
23	35	00100011	#	4B	75	01001011	K
24	36	00100100	\$	4C	76	01001100	L
25	37	00100101	%	4D	77	01001101	Μ
26	38	00100110	&	4E	78	01001110	N
27	39	00100111	3	4F	79	01001111	0

Hex	Dez	Binär	Zeichen	Hex	Dez	Binär	Zeichen
50	80	01010000	Р	7C	124	01111100	
51	81	01010001	Q	7D	125	01111101	}
52	82	01010010	R	7E	126	01111110	
53	83	01010011	S	7F	127	01111111	
54	84	01010100	Т	80	128	10000000	
55	85	01010101	U	81	129	10000001	
56	86	01010110	V	82	130	10000010	
57	87	01010111	W	83	131	10000011	
58	88	01011000	Х	84	132	10000100	
59	89	01011001	Y	85	133	10000101	
5A	90	01011010	Z	86	134	10000110	
5B	91	01011011	ſ	87	135	10000111	
5C	92	01011100	L	88	136	10001000	
5D	93	01011101	1	89	137	10001001	
5E	94	01011110	^	8A	138	10001010	
5F	95	01011111		8B	139	10001011	
60	96	01100000	<u>,</u>	8C	140	10001100	
61	97	01100001	а	8D	141	10001101	
62	98	01100010	b	8E	142	10001110	
63	99	01100011	C	8F	143	10001111	
64	100	01100100	d	90	144	10010000	
65	101	01100101	e	91	145	10010001	
66	102	01100110	f	92	146	10010010	
67	103	01100111	a	93	147	10010011	
68	104	01101000	h	94	148	10010100	
69	105	01101001	i	95	149	10010101	
6A	106	01101010	i	96	150	10010110	
6B	107	01101011	k	97	151	10010111	
60	108	01101100	I.	98	152	10011000	
6D	109	01101101	m	99	153	10011001	
6E	110	01101110	n	9A	154	10011010	
6F	111	01101111	0	9B	155	10011011	
70	112	01110000	D	9C	156	10011100	
71	113	01110001	a	9D	157	10011101	
72	114	01110010	r	9E	158	10011110	
73	115	01110011	S	9F	159	10011111	
74	116	01110100	t	A0	160	10100000	
75	117	01110101	u U	A1	161	10100001	
76	118	01110110	V	A2	162	10100010	
77	119	01110111	Ŵ	A3	163	10100011	
78	120	01111000	x	A4	164	10100100	
79	121	01111001	V	A5	165	10100101	
7A	122	01111010	י ד	A6	166	10100110	
7B	123	01111011	{	A7	167	10100111	

EXDUL-371E / EXDUL-371S © 2013 by Messcomp Datentechnik GmbH

Hex	Dez	Binär	Zeichen	Hex	Dez	Binär	Zeichen
A8	168	10101000		D4	212	11010100	
A9	169	10101001		D5	213	11010101	
AA	170	10101010		D6	214	11010110	
AB	171	10101011		D7	215	11010111	
AC	172	10101100		D8	216	11011000	
AD	173	10101101		D9	217	11011001	
AE	174	10101110		DA	218	11011010	
AF	175	10101111		DB	219	11011011	
B0	176	10110000		DC	220	11011100	
B1	177	10110001		DD	221	11011101	
B2	178	10110010		DE	222	11011110	
B3	179	10110011		DF	223	11011111	
B4	180	10110100		E0	224	11100000	
B5	181	10110101		E1	225	11100001	
B6	182	10110110		E2	226	11100010	
B7	183	10110111		E3	227	11100011	
B8	184	10111000		E4	228	11100100	
B9	185	10111001		E5	229	11100101	
BA	186	10111010		E6	230	11100110	
BB	187	10111011		E7	231	11100111	
BC	188	10111100		E8	232	11101000	
BD	189	10111101		E9	233	11101001	
BE	190	10111110		EA	234	11101010	
BF	191	10111111		EB	235	11101011	
C0	192	11000000		EC	236	11101100	
C1	193	11000001		ED	237	11101101	
C2	194	11000010		EE	238	11101110	
C3	195	11000011		EF	239	11101111	
C4	196	11000100		F0	240	11110000	
C5	197	11000101		F1	241	11110001	
C6	198	11000110		F2	242	11110010	
C7	199	11000111		F3	243	11110011	
C8	200	11001000		F4	244	11110100	
C9	201	11001001		F5	245	11110101	
CA	202	11001010		F6	246	11110110	
CB	203	11001011		F7	247	11110111	
CC	204	11001100		F8	248	11111000	
CD	205	11001101		F9	249	11111001	
CE	206	11001110		FA	250	11111010	
CF	207	11001111		FB	251	11111011	
D0	208	11010000		FC	252	11111100	
D1	209	11010001		FD	253	11111101	
D2	210	11010010		FE	254	11111110	
D3	211	11010011		FF	255	11111111	

EXDUL-371E / EXDUL-371S © 2013 by Messcomp Datentechnik GmbH

12. Produkthaftungsgesetz

Hinweise zur Produkthaftung

Das Produkthaftungsgesetz (ProdHaftG) regelt die Haftung des Herstellers für Schäden, die durch Fehler eines Produktes verursacht werden.

Die Verpflichtung zu Schadenersatz kann schon gegeben sein, wenn ein Produkt aufgrund der Form der Darbietung bei einem nichtgewerblichen Endverbraucher eine tatsächlich nicht vorhandene Vorstellung über die Sicherheit des Produktes erweckt, aber auch wenn damit zu rechnen ist, dass der Endverbraucher nicht die erforderlichen Vorschriften über die Sicherheit beachtet, die beim Umgang mit diesem Produkt einzuhalten wären.

Es muss daher stets nachweisbar sein, dass der nichtgewerbliche Endverbraucher mit den Sicherheitsregeln vertraut gemacht wurde.

Bitte weisen Sie daher im Interesse der Sicherheit Ihre nichtgewerblichen Abnehmer stets auf Folgendes hin:

Sicherheitsvorschriften

Beim Umgang mit Produkten, die mit elektrischer Spannung in Berührung kommen, müssen die gültigen VDE-Vorschriften beachtet werden.

Besonders sei auf folgende Vorschriften hingewiesen: VDE0100; VDE0550/0551; VDE0700; VDE0711; VDE0860. Sie erhalten VDE-Vorschriften beim vde-Verlag GmbH, Bismarckstraße 33, 10625 Berlin.

* Vor Öffnen eines Gerätes den Netzstecker ziehen oder sicherstellen, dass das Gerät stromlos ist.

* Bauteile, Baugruppen oder Geräte dürfen nur in Betrieb genommen werden, wenn sie vorher in ein berührungssicheres Gehäuse eingebaut wurden. Während des Einbaus müssen sie stromlos sein.

* Werkzeuge dürfen an Geräten, Bauteilen oder Baugruppen nur benutzt werden, wenn sichergestellt ist, dass die Geräte von der Versorgungsspannung getrennt sind und elektrische Ladungen, die in im Gerät befindlichen Bauteilen gespeichert sind, vorher entladen wurden.

* Spannungsführende Kabel oder Leitungen, mit denen das Gerät, das Bauteil oder die Baugruppe verbunden sind, müssen stets auf Isolationsfehler oder Bruchstellen untersucht werden. Bei Feststellen eines Fehlers in der Zuleitung muss das Gerät unverzüglich aus dem Betrieb genommen werden, bis die defekte Leitung ausgewechselt worden ist.

* Bei Einsatz von Bauelementen oder Baugruppen muss stets auf die strikte Einhaltung der in der zugehörigen Beschreibung genannten Kenndaten für elektrische Größen hingewiesen werden.

* Wenn aus den vorgelegten Beschreibungen für den nichtgewerblichen Endverbraucher nicht eindeutig hervorgeht, welche elektrischen Kennwerte für ein Bauteil gelten, so muss stets ein Fachmann um Auskunft ersucht werden.

Im Übrigen unterliegt die Einhaltung von Bau- und Sicherheitsvorschriften aller Art (VDE, TÜV, Berufsgenossenschaften usw.) dem Anwender/ Käufer.

13. EG-Konformitätserklärung

Für die Erzeugnisse

EXDUL-371EEDV-Nummer A-381715EXDUL-371SEDV-Nummer A-381710

wird hiermit bestätigt, dass sie den Anforderungen der betreffenden EG-Richtlinien entsprechen. Bei Nichteinhaltung der im Handbuch angegebenen Vorschriften zum bestimmungsgemäßen Betrieb der Produkte verliert diese Erklärung Ihre Gültigkeit.

EN 5502 Klasse B IEC 801-2 IEC 801-3 IEC 801-4 EN 50082-1 EN 60555-2 EN 60555-3

Diese Erklärung wird verantwortlich für den Hersteller

Messcomp Datentechnik GmbH Neudecker Str. 11 83512 Wasserburg

abgegeben durch

Dipl.Ing.(FH) Hans Schnellhammer (Geschäftsführer)

p. Solle

Wasserburg, 25.11.2013

Referenzsystem-Bestimmungsgemäßer Betrieb

Die Multifunktionsmodule EXDUL-371E und EXDUL-371S sind nicht selbständig betreibbare Geräte, dessen CE-Konformität nur bei gleichzeitiger Verwendung von zusätzlichen Computerkomponenten beurteilt werden kann. Die Angaben zur CE-Konformität beziehen sich deshalb ausschließlich auf den bestimmungsgemäßen Einsatz der Multifunktionsmodule in folgendem Referenzsystem:

Schaltschrank:	Vero IMRAK 3400	804-530061C 802-563424J 802-561589J
19" Gehäuse:	Vero PC-Gehäuse	145-010108L
19" Gehäuse:	Zusatzelektronik	519-112111C
Motherboard:	GA-586HX	PIV 1.55
Floppy-Controller:	auf Motherboard	
Floppy:	TEAC	FD-235HF
Grafikkarte:	Advantech	PCA-6443
Schnittstellen:	EXDUL-371E EXDUL-371S	A-381715 A-381710